首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >A Deep Learning Approach to Photoacoustic Wavefront Localization in Deep-Tissue Medium
【24h】

A Deep Learning Approach to Photoacoustic Wavefront Localization in Deep-Tissue Medium

机译:深层组织介质中光声波前定位的深度学习方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Optical photons undergo strong scattering when propagating beyond 1-mm deep inside biological tissue. Finding the origin of these diffused optical wavefronts is a challenging task. Breaking through the optical diffusion limit, photoacoustic (PA) imaging (PAI) provides high-resolution and label-free images of human vasculature with high contrast due to the optical absorption of hemoglobin. In real-time PAI, an ultrasound transducer array detects PA signals, and B-mode images are formed by delay-and-sum or frequency-domain beamforming. Fundamentally, the strength of a PA signal is proportional to the local optical fluence, which decreases with the increasing depth due to depth-dependent optical attenuation. This limits the visibility of deep-tissue vasculature or other light-absorbing PA targets. To address this practical challenge, an encoder–decoder convolutional neural network architecture was constructed with custom modules and trained to identify the origin of the PA wavefronts inside an optically scattering deep-tissue medium. A comprehensive ablation study provides strong evidence that each module improves the localization accuracy. The network was trained on model-based simulated PA signals produced by 16 240 blood-vessel targets subjected to both optical scattering and Gaussian noise. Test results on 4600 simulated and five experimental PA signals collected under various scattering conditions show that the network can localize the targets with a mean error less than 30 microns (standard deviation 20.9 microns) for targets below 40-mm imaging depth and 1.06 mm (standard deviation 2.68 mm) for targets at a depth between 40 and 60 mm. The proposed work has broad applications such as diffused optical wavefront shaping, circulating melanoma cell detection, and real-time vascular surgeries (e.g., deep-vein thrombosis).
机译:当光学光子在生物组织内部传播超过 1 毫米深时,会经历强烈的散射。寻找这些漫射光波前的起源是一项具有挑战性的任务。光声 (PA) 成像 (PAI) 突破了光学扩散极限,由于血红蛋白的光吸收,可提供高分辨率和无标记的人体脉管系统图像,具有高对比度。在实时PAI中,超声换能器阵列检测PA信号,B模式图像通过延迟和和或频域波束成形形成。从根本上说,PA信号的强度与局部光通量成正比,由于深度依赖性光衰减,局部光通量随着深度的增加而降低。这限制了深部组织脉管系统或其他光吸收 PA 靶标的可见性。为了应对这一实际挑战,使用自定义模块构建了编码器-解码器卷积神经网络架构,并进行了训练,以识别光学散射深层组织介质中PA波前的起源。全面的消融研究提供了强有力的证据,证明每个模块都提高了定位的准确性。该网络基于模型的模拟PA信号进行训练,该信号由16 240个血管目标产生,同时受到光学散射和高斯噪声的影响。在不同散射条件下采集的4600个模拟PA信号和5个实验PA信号的测试结果表明,对于成像深度低于40 mm的目标,该网络可以定位目标,平均误差小于30微米(标准差20.9微米),对于深度在40-60 mm的目标,平均误差小于1.06 mm(标准差2.68 mm)。所提出的工作具有广泛的应用,例如漫射光波前整形、循环黑色素瘤细胞检测和实时血管手术(例如深静脉血栓形成)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号