...
首页> 外文期刊>Geobiology >Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation
【24h】

Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation

机译:Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Protection from radiation damage is an important adaptation for phototrophic microbes. Living in surface, shallow water, and peritidal environments, cyanobacteria are especially exposed to long‐wavelength ultraviolet (UVA) radiation. Several groups of cyanobacteria within these environments are protected from UVA damage by the production of the pigment scytonemin. Paleontological evidence of cyanobacteria in UVA‐exposed environments from the Proterozoic, and possibly as early as the Archaean, suggests a long evolutionary history of radiation protection within this group. We show that phylogenetic analyses of enzymes in the scytonemin biosynthesis pathway support this hypothesis and reveal a deep history of vertical inheritance of this pathway within extant cyanobacterial diversity. Referencing this phylogeny to cyanobacterial molecular clocks suggests that scytonemin production likely appeared during the early Proterozoic, soon after the Great Oxygenation Event. This timing is consistent with an adaptive scenario for the evolution of scytonemin production, wherein the threat of UVA‐generated reactive oxygen species becomes significantly greater once molecular oxygen is more pervasive across photosynthetic environments.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号