首页> 外文期刊>plos computational biology >Optimizing interneuron circuits for compartment-specific feedback inhibition
【24h】

Optimizing interneuron circuits for compartment-specific feedback inhibition

机译:优化中间神经元回路以实现区室特异性反馈抑制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cortical circuits process information by rich recurrent interactions between excitatory neurons and inhibitory interneurons. One of the prime functions of interneurons is to stabilize the circuit by feedback inhibition, but the level of specificity on which inhibitory feedback operates is not fully resolved. We hypothesized that inhibitory circuits could enable separate feedback control loops for different synaptic input streams, by means of specific feedback inhibition to different neuronal compartments. To investigate this hypothesis, we adopted an optimization approach. Leveraging recent advances in training spiking network models, we optimized the connectivity and short-term plasticity of interneuron circuits for compartment-specific feedback inhibition onto pyramidal neurons. Over the course of the optimization, the interneurons diversified into two classes that resembled parvalbumin (PV) and somatostatin (SST) expressing interneurons. Using simulations and mathematical analyses, we show that the resulting circuit can be understood as a neural decoder that inverts the nonlinear biophysical computations performed within the pyramidal cells. Our model provides a proof of concept for studying structure-function relations in cortical circuits by a combination of gradient-based optimization and biologically plausible phenomenological models. Author summaryThe brain contains billions of nerve cells-neurons-that can be classified into different types depending on their shape, connectivity and activity. A particularly diverse group of neurons is that of inhibitory neurons, named after their suppressive effect on neural activity. Presumably, their diverse properties allow inhibitory neurons to fulfil different functions, but what these functions are is currently unclear. In this paper, we investigated if a particular function can explain the existence and properties of the two most common inhibitory cell classes: The need to regulate activity in different physical parts (compartments) of the neurons they target. We investigated this function in a computer model, using optimization to find the neuron properties best-suited for compartment-specific inhibition. Our key result is that after the optimization, model neurons largely fell into two classes that resembled the two types of biological neurons. In particular, the optimized neurons were connected to only one compartment of other neurons. This suggests that the diversity of inhibitory neurons is well suited for compartment-specific inhibition. In the future, our approach of optimizing neural properties might be used to investigate other functions (or dysfunctions) of neuron diversity.
机译:皮层回路通过兴奋性神经元和抑制性中间神经元之间丰富的反复相互作用来处理信息。中间神经元的主要功能之一是通过反馈抑制来稳定电路,但抑制反馈起作用的特异性水平尚未完全解决。我们假设抑制电路可以通过对不同神经元区室的特定反馈抑制,为不同的突触输入流启用单独的反馈控制回路。为了研究这一假设,我们采用了一种优化方法。利用训练尖峰网络模型的最新进展,我们优化了中间神经元电路的连通性和短期可塑性,以对锥体神经元进行室特异性反馈抑制。在优化过程中,中间神经元分为两类,类似于表达小白蛋白(PV)和生长抑素(SST)的中间神经元。通过模拟和数学分析,我们表明,生成的电路可以理解为一个神经解码器,它反转了在锥体细胞内执行的非线性生物物理计算。我们的模型通过结合基于梯度的优化和生物学上合理的现象学模型,为研究皮层回路中的结构-功能关系提供了概念证明。作者摘要大脑包含数十亿个神经细胞(神经元),这些神经细胞可以根据它们的形状、连接性和活动分为不同的类型。一组特别多样化的神经元是抑制性神经元,以其对神经活动的抑制作用而得名。据推测,它们的不同特性允许抑制性神经元实现不同的功能,但这些功能是什么目前尚不清楚。在本文中,我们研究了特定功能是否可以解释两种最常见的抑制性细胞类别的存在和特性:需要调节它们靶向的神经元的不同物理部分(隔室)的活动。我们在计算机模型中研究了这一功能,使用优化来找到最适合区室特异性抑制的神经元特性。我们的主要结果是,在优化之后,模型神经元主要分为两类,类似于两种类型的生物神经元。特别是,优化的神经元仅连接到其他神经元的一个区室。这表明抑制性神经元的多样性非常适合区室特异性抑制。将来,我们优化神经特性的方法可能用于研究神经元多样性的其他功能(或功能障碍)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号