首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science >Two-dimensional hybrid analytical approach for the investigation of thermal aspects in human tissue undergoing regional hyperthermia therapy
【24h】

Two-dimensional hybrid analytical approach for the investigation of thermal aspects in human tissue undergoing regional hyperthermia therapy

机译:Two-dimensional hybrid analytical approach for the investigation of thermal aspects in human tissue undergoing regional hyperthermia therapy

获取原文
获取原文并翻译 | 示例
           

摘要

The formation of the present work is based on the development of the exact analytical solution of two-dimensional temperature response by employing the hyperbolic heat conduction bioheat model in a single-layered human skin tissue subjected to the regional hyperthermia therapy (RHT) for cancer treatment. The mathematical approach has been utilized as a hybrid form of 'separation of variables' and 'finite integral transform' method. Three kinds of surface heat fluxes (constant, sinusoidal and cosine) have been employed as an external heat source on the therapeutic surface of the square-shaped skin tissue of 100 mm x 100 mm. An innovative form of initial condition (spatially dependent) has been implemented in the present mathematical formulation as skin tissues are highly non-homogeneous and non-uniform in structure. The present research outcome indicates that cosine heat flux would be a suitable alternative for the sinusoidal heat flux. The impact of the relaxation time lag has been clearly noted in the thermal response with the waveform-like behaviour and it justifies the postulate of hyperbolic heat conduction. The two-dimensional temperature of the skin tissue has been observed in the range of 48.1 celcius-40 celcius (in decreasing order). Estimated peak temperatures are in the proposed spectrum of hyperthermia therapy for an exposure time of 100 s, and this fact is true in an agreement with the medical protocol of the cancer treatment. The accuracy of the mathematical modelling and in-house computer codes are justified with the published numerical models and the maximum deviation of the thermal response has been noticed in order of 1.5-3%. The two-dimensional surface thermal contours have provided a glimpse of heat flow in the physical domain of skin tissue under different heating conditions and this research output may be beneficial to establish the theoretical standard of the regional hyperthermia treatment for cancer eradication.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号