...
首页> 外文期刊>Journal of engineering for gas turbines and power: Transactions of the ASME >Catalytic Combustion Systems for Microscale Gas Turbine Engines
【24h】

Catalytic Combustion Systems for Microscale Gas Turbine Engines

机译:Catalytic Combustion Systems for Microscale Gas Turbine Engines

获取原文
获取原文并翻译 | 示例

摘要

As part of an ongoing effort to develop a microscale gas turbine engine for power generation and micropropulsion applications, this paper presents the design, modeling, and experimental assessment of a catalytic combustion system. Previous work has indicated that homogenous gas-phase microcombustors are severely limited by chemical reaction timescales. Storable hydrocarbon fuels, such as propane, have been shown to blow out well below the desired mass flow rate per unit volume. Heterogeneous catalytic combustion has been identified as a possible improvement. Surface catalysis can increase hydrocarbon-air reaction rates, improve ignition characteristics, and broaden stability limits. Several radial inflow combustors were micromachined from silicon wafers using deep reactive ion etching and aligned fusion wafer bonding. The 191 mm{sup}3 combustion chambers were filled with platinum-coated foam materials of various porosity and surface area. For near stoichiometric propane-air mixtures, exit gas temperatures of 1100 K were achieved at mass flow rates in excess of 0.35 g/s. This corresponds to a power density of ~1200 MW/m{sup}3; an 8.5-fold increase over the maximum power density achieved for gas-phase propane-air combustion in a similar geometry. Low-order models, including time-scale analyses and a one-dimensional steady-state plug-flow reactor model, were developed to elucidate the underlying physics and to identify important design parameters. High power density catalytic microcombustors were found to be limited by the diffusion of fuel species to the active surface, while substrate porosity and surface area-to-volume ratio were the dominant design variables.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号