首页> 外文期刊>Pesticide science >Virus recognition and pathogenicity: Implications for resistance mechanisms and breeding
【24h】

Virus recognition and pathogenicity: Implications for resistance mechanisms and breeding

机译:病毒识别和致病性:对耐药机制和育种的影响

获取原文
获取外文期刊封面目录资料

摘要

AbstractThe major method of control of virus diseases in crop plants is breeding for resistance. The genetics of resistance, and of matching virulence (the ability of a virus strain to overcome a specific host resistance gene) have been studied less for viruses than for fungal and bacterial pathogens. This paper draws on a survey of the genetics of resistance to a large number of viruses in cultivated crops, and makes some generalisations and predictions about mechanisms.Most resistance to viruses in crops is monogenic. Dominant alleles are associated with virus‐localisation mechanisms, which are induced after infection. The nature of the ‘recognition event’ between plant‐ and virus‐coded functions, which triggers resistance plus a cascade of secondary responses, is not yet known. Gene dosage‐dependent alleles tend to be associated with non‐localising resistance, which allows some virus spread, but inhibits multiplication. Recessive alleles may involve a negative type of resistance mechanism, whereby the resistant plant lacks some function normally required by the virus for pathogenesis. Such resistance tends to be expressed as complete immunity.Many resistance genes have been overcome by virulent isolates of viruses; only 10 of the sample of resistance genes have proved exceptionally durable. Virulence may involve different viral functions. The production of infectious cDNA clones, and construction of chimaeric recombinants between clones of virulent and avirulent isolates, is now allowing detailed mapping of virulence determinants.Transformation of plants with ‘novel’ genes for virus resistance, based on coat proteins and viral satellites, may allow construction of more robust r
机译:摘要防治作物病毒病害的主要方法是抗性育种。与真菌和细菌病原体相比,对病毒的耐药性和匹配毒力(病毒株克服特定宿主抗性基因的能力)的遗传学研究较少。本文借鉴了栽培作物对大量病毒抗性的遗传学调查,并对其机制进行了一些概括和预测。作物对病毒的大多数抗性是单基因的。显性等位基因与病毒定位机制有关,病毒定位机制在感染后被诱导。植物和病毒编码功能之间的“识别事件”的性质尚不清楚,该事件会触发耐药性和一连串的次级反应。基因剂量依赖性等位基因往往与非定位耐药性有关,这允许一些病毒传播,但抑制增殖。隐性等位基因可能涉及一种阴性类型的抗性机制,即抗性植物缺乏病毒发病机制通常所需的某些功能。这种抵抗力往往表现为完全免疫。许多抗性基因已被病毒的毒性分离株所克服;只有10%的抗性基因样本被证明具有特别的持久性。毒力可能涉及不同的病毒功能。传染性cDNA克隆的生产,以及在毒力和无毒分离株的克隆之间构建嵌合重组体,现在可以对毒力决定因素进行详细定位。基于外壳蛋白和病毒卫星,将具有抗病毒性“新”基因的植物转化,可能允许构建更强大的 r

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号