首页> 外文期刊>Nanoscale >Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure
【24h】

Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure

机译:单个氮化钛纳米结构上的等离子体纳米级温度整形

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Arbitrary shaping of temperature fields at the nanometre scale is an important goal in nanotechnology; however, this is challenging because of the diffusive nature of heat transfer. In the present work, we numerically demonstrated that spatial shaping of nanoscale temperature fields can be achieved by plasmonic heating of a single titanium nitride (TiN) nanostructure. A key feature of TiN is its low thermal conductivity (kTiN = 29 W m−1 K−1) compared with ordinary plasmonic metals such as Au (kAu = 314 W m−1 K−1). When the localised surface plasmon resonance of a metal nanostructure is excited, the light intensity is converted to heat power density in the nanostructure via the Joule heating effect. For a gold nanoparticle, non-uniform spatial distributions of the heat power density will disappear because of the high thermal conductivity of Au; the nanoparticle surface will be entirely isothermal. In contrast, the spatial distributions of the heat power density can be clearly transcribed into temperature fields on a TiN nanostructure because the heat dissipation is suppressed. In fact, we revealed that highly localised temperature distributions can be selectively controlled around the TiN nanostructure at a spatial resolution of several tens of nanometres depending on the excitation wavelength. The present results indicate that arbitrary temperature shaping at the nanometre scale can be achieved by designing the heat power density in TiN nanostructures for plasmonic heating, leading to unconventional thermofluidics and thermal chemical biology.
机译:任意塑造的温度场纳米尺度是一个重要的目标纳米技术;由于传热的扩散性质。在目前的工作,我们数值显示空间形成纳米尺度的温度字段可以通过电浆加热的单一的氮化钛纳米结构(锡)。锡的关键特性是它的低热电导率(kTiN = 29 [W m−1 K−1])比较与普通电浆金属如非盟(滘=314年[W m−1 K−1])。金属纳米结构的等离子体共振兴奋,光强度转换为热量通过电阻功率密度的纳米结构加热效果。空间分布不均匀的热量因为高功率密度将会消失非盟的导热系数;将完全等温表面。空间分布的热功率可以清楚地转录成密度锡纳米结构由于温度场散热是抑制。透露,高度本地化的温度发行版可以有选择地控制在锡纳米结构空间解决几十纳米根据不同的激发波长。目前的结果表明,任意的温度在纳米尺度可以形成通过设计的热功率密度锡纳米结构对电浆加热,领先非常规thermofluidics和热化学生物学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号