首页> 外文期刊>Archives of Metallurgy and Materials >MODELLING AND NUMERICAL ANALYSIS OF HARDENING PHENOMENA OF TOOLS STEEL ELEMENTS
【24h】

MODELLING AND NUMERICAL ANALYSIS OF HARDENING PHENOMENA OF TOOLS STEEL ELEMENTS

机译:工具钢元件硬化现象的建模与数值分析

获取原文
获取原文并翻译 | 示例
           

摘要

This research the complex model of hardening of tool steel was shown. Thermal phenomena, phase transformations and mechanical phenomena were taken into considerations. In the modelling of thermal phenomena the heat transfer equations has been solved by Finite Elements Method by Petrov-Galerkin formulations. The possibility of thermal phenomena analysing of feed hardening has been obtained in this way. The diagrams of continuous heating (CHT) and continuous cooling (CCT) of considered steel are used in the model of phase transformations. Phase altered fractions during the continuous heating (austenite) are obtained in the model by formula Johnson-Mehl and Avrami and modified equation Koistinen and Marburger. The fractions ferrite, pearlite or bainite, in the process of cooling, are marked in the model by formula Johnson-Mehl and Avrami. The forming fraction of martensite is identified by Koistinen and Marburger equation and modified Koistinen and Marburger equation. The stresses and strains fields are obtained from solutions by FEM equilibrium equations in rate form. Thermophysical values in the constitutive relations are depended upon both the temperature and the phase content. The Huber-Misses condition with the isotropic strengthening for the creation of plastic strains is used. However the Leblond model to determine transformations plasticity was applied. The numerical analysis of thermal fields, phase fractions, stresses and strain associated deep hardening and superficial hardening of elements made of tool steel were done.
机译:研究表明了工具钢淬火的复杂模型。考虑了热现象,相变和机械现象。在热现象建模中,传热方程已通过Petrov-Galerkin公式的有限元法求解。以这种方式获得了进料硬化的热现象分析的可能性。相变模型中使用了考虑钢的连续加热(CHT)和连续冷却(CCT)的图表。在模型中,可通过公式Johnson-Mehl和Avrami以及修改的方程式Koistinen和Marburger获得连续加热(奥氏体)过程中的相变分数。冷却过程中,铁素体,珠光体或贝氏体的成分在模型中用Johnson-Mehl和Avrami公式标记。马氏体的形成分数通过Koistinen和Marburger方程以及改进的Koistinen和Marburger方程确定。应力场和应变场是通过速率形式的FEM平衡方程从溶液中获得的。本构关系中的热物理值取决于温度和相含量。使用具有各向同性强化的Huber-Misses条件来产生塑性应变。但是,使用了Leblond模型来确定转变的可塑性。对工具钢制成的元件进行了热场,相分数,应力和应变相关的深部硬化和表面硬化的数值分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号