首页> 外文期刊>Applied Spectroscopy: Society for Applied Spectroscopy >Quantitative Interpretation of Mineral Hyperspectral Images Based on Principal Component Analysis and Independent Component Analysis Methods
【24h】

Quantitative Interpretation of Mineral Hyperspectral Images Based on Principal Component Analysis and Independent Component Analysis Methods

机译:基于主成分分析和独立成分分析方法的矿物高光谱图像定量解释

获取原文
获取原文并翻译 | 示例

摘要

Interpretation of mineral hyperspectral images provides large amounts of high-dimensional data, which is often complicated by mixed pixels. The quantitative interpretation of hyperspectral images is known to be extremely difficult when three types of information are unknown, namely, the number of pure pixels, the spectrum of pure pixels, and the mixing matrix. The problem is made even more complex by the disturbance of noise. The key to interpreting abstract mineral component information, i.e., pixel unmixing and abundance inversion, is how to effectively reduce noise, dimension, and redundancy. A three-step procedure is developed in this study for quantitative interpretation of hyper-spectral images. First, the principal component analysis (PCA) method can be used to process the pixel spectrum matrix and keep characteristic vectors with larger eigenvalues. This can effectively reduce the noise and redundancy, which facilitates the abstraction of major component information. Second, the independent component analysis (ICA) method can be used to identify and unmix the pixels based on the linear mixed model. Third, the pure-pixel spectrums can be normalized for abundance inversion, which gives the abundance of each pure pixel. In numerical experiments, both simulation data and actual data were used to demonstrate the performance of our three-step procedure. Under simulation data, the results of our procedure were compared with theoretical values. Under the actual data measured from core hyperspectral images, the results obtained through our algorithm are compared with those of similar software (Mineral Spectral Analysis 1.0, Nanjing Institute of Geology and Mineral Resources). The comparisons show that our method is effective and can provide reference for quantitative interpretation of hyperspectral images.
机译:矿物高光谱图像的解释提供了大量的高维数据,这些数据通常由于混合像素而变得复杂。当三种类型的信息(即纯像素的数量,纯像素的光谱和混合矩阵)未知时,对高光谱图像进行定量解释非常困难。噪声的干扰使问题变得更加复杂。解释抽象矿物成分信息(即像素分解和丰度反演)的关键是如何有效降低噪声,尺寸和冗余度。本研究中开发了一个三步过程,用于定量解释高光谱图像。首先,可以使用主成分分析(PCA)方法处理像素光谱矩阵,并保留特征值较大的特征向量。这可以有效地减少噪声和冗余,从而有助于提取主要组件信息。第二,基于线性混合模型,可以使用独立分量分析(ICA)方法来识别像素并取消混合像素。第三,可以将纯像素光谱归一化以进行丰度反转,从而得出每个纯像素的丰度。在数值实验中,仿真数据和实际数据均被用来证明我们的三步程序的性能。在模拟数据下,我们的程序的结果与理论值进行了比较。在从核心高光谱图像测得的实际数据下,将通过我们的算法获得的结果与类似软件(矿物光谱分析1.0,南京地质矿产学院)的结果进行比较。比较表明,该方法是有效的,可为高光谱图像的定量解释提供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号