首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity
【24h】

Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity

机译:地磁响应的统计分析不同的太阳风司机和风暴强度的依赖

获取原文
获取原文并翻译 | 示例
           

摘要

Geomagnetic storms start with activity on the Sun that causes propagation of magnetized plasma structures in the solar wind. The type of solar activity is used to classify the plasma structures as being either interplanetary coronal mass ejection (ICME) or corotating interaction region (CIR) driven. The ICME-driven events are further classified as either magnetic cloud (MC) driven or sheath (SH) driven by the geoeffective structure responsible for the peak of the storm. The geoeffective solar wind flow then interacts with the magnetosphere producing a disturbance in near-Earth space. It is commonly believed that a SH-driven event behaves more like a CIR-driven event than a MC-driven event; however, in our analysis this is not the case. In this study, geomagnetic storms are investigated statistically with respect to the solar wind driver and the intensity of the events. We use the Hot Electron and Ion Drift Integrator (HEIDI) model to simulate the inner magnetospheric hot ion population during all of the storms classified as intense (Dstmin ≤-100 nT) within solar cycle 23 (1996–2005). HEIDI is configured four different ways using either the Volland-Stern or self-consistent electric field and either event-based Los Alamos National Laboratory (LANL) magnetospheric plasma analyzer (MPA) data or a reanalyzed lower resolution version of the data that provides spatial resolution. Presenting the simulation results, geomagnetic data, and solar wind data along a normalized epoch timeline shows the average behavior throughout a typical storm of each classification. The error along the epoch timeline for each HEIDI configuration is used to rate the model's performance. We also subgrouped the storms based on the magnitude of the minimum Dst. We found that typically the LANL MPA data provide the best outer boundary condition. Additionally, the self-consistent electric field better reproduces SH- and MC-driven events throughout most of the storm timeline, but the Volland-Stern electric field better reproduces CIR-driven events. Contrary to what we expect, examination of the HEIDI model results and solar wind data shows that SH-driven events behave more like MC-driven events than CIR-driven storms.
机译:太阳磁暴开始活动导致磁化等离子体的传播结构在太阳风。活动是用于等离子体进行分类结构为星际日冕大喷发(ICME)或共转交互区域(CIR)驱动的。进一步分为磁云(MC)驱动或鞘(SH)由geoeffective驱动的结构负责风暴的高峰。然后geoeffective太阳风流动相互作用与磁场产生扰动近地空间。表现得更像一个CIR-driven SH-driven事件事件比MC-driven事件;分析实际情况并非如此。磁暴是统计调查对太阳风司机和强度的事件。和离子漂移集成商(海蒂)模型模拟内部磁性层的热离子在所有的风暴分为人口太阳周期内强烈(Dstmin≤-100元)23(1996 - 2005)。使用Volland-Stern或方法自洽电场和基于事件的洛斯阿拉莫斯国家实验室(LANL)磁性层的等离子体分析仪(MPA)或数据再分析低分辨率版本的数据提供的空间分辨率。仿真结果、地磁数据和太阳能风沿着规范化时代时间表显示数据在一个典型的风暴的平均行为每个分类。每个海蒂配置用于时间表率模型的性能。基于最小的大小的暴风雨Dst。提供最好的外边界条件。此外,自洽电场更好的繁殖SH——和MC-driven事件在暴风雨的时间表,但是Volland-Stern电场更好的繁殖CIR-driven事件。海蒂模型的检验结果和太阳能风数据显示,SH-driven事件的行为像MC-driven事件比CIR-driven风暴。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号