首页> 外文期刊>ACS applied materials & interfaces >Controlling and Optimizing Photoinduced Charge Transfer across Ultrathin Silica Separation Membrane with Embedded Molecular Wires for Artificial Photosynthesis
【24h】

Controlling and Optimizing Photoinduced Charge Transfer across Ultrathin Silica Separation Membrane with Embedded Molecular Wires for Artificial Photosynthesis

机译:用嵌入式分子线对人工光合作用的超薄二氧化硅分离膜控制和优化光诱导的电荷转移

获取原文
获取原文并翻译 | 示例
       

摘要

Ultrathin amorphous silica membranes with embedded organic molecular wires (oligo(p-phenylenevinylene), three aryl units) provide chemical separation of incompatible catalytic environments of CO2 reduction and H2O oxidation while maintaining electronic and protonic coupling between them. For an efficient nanoscale artificial photosystem, important performance criteria are high rate and directionality of charge flow. Here, the visible-light-induced charge flow from an anchored Ru bipyridyl light absorber across the silica nanomembrane to Co3O4 water oxidation catalyst is quantitatively evaluated by photocurrent measurements. Charge transfer rates increase linearly with wire density, with 5 nm(-2) identified as an optimal target. Accurate measurement of wire and light absorber densities is accomplished by the polarized FT-IRRAS method. Guided by density functional theory (DFT) calculations, four wire derivatives featuring electron-donating (methoxy) and -withdrawing groups (sulfonate, perfluorophenyl) with highest occupied molecular orbital (HOMO) potentials ranging from 1.48 to 0.64 V vs NHE were synthesized and photocurrents evaluated. Charge transfer rates increase sharply with increasing driving force for hole transfer from the excited light absorber to the embedded wire, followed by a decrease as the HOMO potential of the wire moves beyond the Co3O4 valence band level toward more negative values, pointing to an optimal wire HOMO potential around 1.3 V vs NHE. Comparison with photocurrents of samples without nanomembrane indicates that silica layers with optimized wires are able to approach undiminished electron flux at typical solar intensities. Combined with the established high proton conductivity and small-molecule blocking property, the charge transfer measurements demonstrate that oxidation and reduction catalysis can be efficiently integrated on the nanoscale under separation by an ultrathin silica membrane.
机译:带有嵌入有机分子线(低聚(对苯撑乙烯基)、三个芳基单元)的超薄无定形二氧化硅膜提供了CO2还原和H2O氧化等不相容催化环境的化学分离,同时保持了它们之间的电子和质子耦合。对于一个高效的纳米级人工光系统,重要的性能指标是高速率和方向性的电荷流。在这里,通过光电流测量定量评估了从锚定钌联吡啶光吸收剂穿过二氧化硅纳米膜到Co3O4水氧化催化剂的可见光诱导电荷流。电荷转移速率随线密度线性增加,5nm(-2)为最佳目标。通过偏振FT-IRRAS方法,可以精确测量导线和光吸收体密度。在密度泛函理论(DFT)计算的指导下,合成了具有给电子(甲氧基)和吸电子基团(磺酸盐、全氟苯基)的四线衍生物,其最高占据分子轨道(HOMO)电位范围为1.48至0.64 V vs NHE,并评估了光电流。电荷转移速率随着空穴转移驱动力的增加而急剧增加,空穴转移驱动力从激发光吸收体转移到嵌入的金属丝,随着金属丝的同质电位从Co3O4价带水平向更负的值移动,电荷转移速率随之降低,表明相对于NHE,1.3 V左右的最佳金属丝同质电位。与没有纳米膜的样品的光电流比较表明,在典型的太阳强度下,具有优化导线的二氧化硅层能够接近不减小的电子通量。结合已建立的高质子传导性和小分子封闭性,电荷转移测量表明,在超薄二氧化硅膜分离的情况下,氧化和还原催化可以在纳米尺度上有效集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号