首页> 外文期刊>ACS applied materials & interfaces >Mitigating Bubble Traffic in Gas-Evolving Electrodes via Spinodally Derived Architectures
【24h】

Mitigating Bubble Traffic in Gas-Evolving Electrodes via Spinodally Derived Architectures

机译:通过旋转型架构缓解燃气不断发展的电极的泡沫流量

获取原文
获取原文并翻译 | 示例
       

摘要

Porous electrodes are widely used in the industry because of their high surface area to volume ratio. However, the stochastic morphology of most commercially available porous electrodes results in poor electrical connections in the solid phase and inefficient mass transport through the pore phase. This can be especially detrimental for gas-evolving processes such as water electrolysis for hydrogen and oxygen generation. Bicontinuous interfacially jammed emulsion gels (bijels) offer templates from which to create porous electrodes with robust solid-state interconnectivity and a uniform pore structure that facilitate improved electron and mass transport. In this study, gas release rates and electrochemical experiments are utilized to study the effects of powder- and bijel-derived microstructures on hydrogen generation by water electrolysis. The bijel-derived electrodes are shown to expel product gas faster and require up to 25% less overpotential to drive water electrolysis over the range of current densities tested (?5 to ?40 mA/cm~(2)) than their powder-derived analogs. Our findings suggest that the uniform and bicontinuous domains of bijel-derived porous electrodes can mitigate the limited current distribution and deleterious bubble effect found in stochastic electrodes, in turn improving the overall performance of electrolytic processes requiring transport of gaseous species.
机译:多孔电极因其高比表面积而在工业中得到广泛应用。然而,大多数商用多孔电极的随机形态导致固相中的电连接不良,以及通过孔相的低效质量传输。这对析气过程尤其有害,例如水电解制氢和制氧。双连续界面堵塞乳液凝胶(BIJEL)提供模板,从中创建多孔电极,具有坚固的固态互连性和均匀的孔结构,有助于改善电子和质量传输。在本研究中,利用气体释放速率和电化学实验来研究粉末和bijel衍生的微观结构对水电解制氢的影响。在测试的电流密度范围内(5到40 mA/cm~(2)),bijel衍生的电极比其粉末衍生的类似物能够更快地排出产品气体,并需要高达25%的过电位来驱动水电解。我们的研究结果表明,bijel衍生多孔电极的均匀和双连续畴可以缓解随机电极中的有限电流分布和有害气泡效应,进而改善需要运输气体物种的电解过程的整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号