首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Photocatalytic hydrogen production over Rh-loaded TiO2: What is the origin of hydrogen and how to achieve hydrogen production from water?
【24h】

Photocatalytic hydrogen production over Rh-loaded TiO2: What is the origin of hydrogen and how to achieve hydrogen production from water?

机译:在RH负载TiO2上的光催化氢气产生:氢的起源是什么,如何从水中达到氢气?

获取原文
获取原文并翻译 | 示例
           

摘要

The utilization of sacrificial reagents is one of the most common strategies to accelerate hydrogen production from water via a photocatalytic process. However, herein, solid isotope labeling evidences revealed that hydrogen was mainly produced from methanol (the sacrificial molecule) instead of water in the room-temperature photocatalytic reaction over Rh-loaded TiO2. In contrast, the production of hydrogen mainly from water was achieved by introducing thermal energy into the photocatalytic process as a novel thermo-photo catalytic approach, in which the active species changed from protons to water molecules. Furthermore, while the thermal (kinetic) energy introduced by elevating the reaction temperature could increase the oxidation driving force and thus improved the photocatalytic efficiency under visible light irradiation, photo energy in turn accelerated thermal catalysis via reducing the oxidized Rh nanoparticles and enhancing the interaction between Rh and TiO2. Consequently, 1500-fold enhancement in the hydrogen production rate under visible light irradiation was achieved. These findings not only highlight the vital importance to identify the reaction pathway of hydrogen production but also should inspire more efforts into the synergetic effects of energies.
机译:牺牲试剂的利用是通过光催化过程加速水的最常见的策略之一。然而,在此,固体同位素标记证据表明,氢主要由甲醇(牺牲分子)而不是Rh负载的TiO 2上的室温光催化反应中的水。相比之下,主要通过将热能引入光催化过程作为一种新的热光催化方法来实现氢的生产,其中活性物种从质子变为水分子。此外,虽然通过升高反应温度引入的热(动力学)能量可以增加氧化驱动力并因此改善了可见光照射下的光催化效率,但光能依次通过减少氧化Rh纳米颗粒并增强之间的相互作用而加速热催化。 RH和TiO2。因此,实现了可见光照射下的氢生产率的1500倍。这些发现不仅突出了识别氢生产的反应途径的重要性,而且应该激发更多的努力进入能量的协同效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号