首页> 外文期刊>ACS applied materials & interfaces >Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols
【24h】

Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols

机译:空穴传输层对促进热寿命方案的倒置有机光伏热稳定性的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite 60 the high PCE values reported, stability investigations are still 60 limited and the exact degradation mechanisms of inverted a) OPVs using thermally evaporated MoO3 HTL remain unclear is under different environmental stress factors. In this study, we 20 monitor the accelerated lifetime performance under the ISOS- D-2 protocol (heat conditions 65 degrees C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2ethylhexyl)oxy]benzo [1,2-b : 4, 5-b] dithiophene-2,6-diy1] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C-71-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO3 HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BlVI/Mo0(3) interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study.
机译:高功率转换效率(PCE)倒置有机光伏(OPV)通常使用热蒸发的MOO3作为空穴传输层(HTL)。尽管报道了60个高PCE值,但稳定性研究仍然是60限制,并且使用热蒸发的MOO3 HTL的倒置A)OPV的确切降解机制仍不清楚在不同的环境应激因子下。在本研究中,基于基于噻吩基的活性层材料聚(3-己基噻吩)(P3HT),对非封装倒置OPVS的ISOS-D-2协议(热条件65摄氏度)下的加速寿命性能监测加速寿命性能[4,8-双[(2甲基己基)氧]苯并[1,2-B:4,5-B]二噻吩-2,6-DIY1] [3-氟-2- [(2-乙基己基)羰基] Thieno [3,4-b]噻吩二苯基]](PTB7)和噻吩并[3,2-B]噻吩 - 二酮 - 二酮 - 二酮 - 二酮 - 与[6,6] - 苯基-71-丁酸甲酯(PC [ 70] Bm)。提出的降解机制调查专注于优化P3HT:PC [70]基于BM的倒置OPV。具体地,我们对使用溶液加工聚(3,4-乙二氧基噻吩)的倒置P3HT的热稳定性的系统研究:PC [70] BM OPVS:聚苯乙烯磺酸盐(PEDOT:PSS)和蒸发MOO3 HTL。使用一系列测量和逆向工程方法,我们报告了P​​3HT:PC [70] BLVI / MO0(3)接口是P3HT:PC [70]基于BM的倒置OPV在激烈的热量条件下的主要原点,对于本研究中使用的其他两种基于噻吩的聚合物也观察到的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号