首页> 外文期刊>ACS nano >Carbon-Nanotube-Electrolyte Interface: Quantum and Electric Double Layer Capacitance
【24h】

Carbon-Nanotube-Electrolyte Interface: Quantum and Electric Double Layer Capacitance

机译:碳纳米管电解质界面:量子和电双层电容

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We present a comprehensive study of the electrochemical capacitance between a one-dimensional electronic material and an electrolyte. In contrast to a conventional, planar electrode, the nanoscale dimension of the electrode (with diameter smaller than the Debye length and approaching the size of the ions in solution) qualitatively changes the capacitance, which we measure and model herein. Furthermore, the finite density of states in these low dimensional electronic systems results in a quantum capacitance, which is comparable to the electrochemical capacitance. Using electrochemical impedance spectroscopy (EIS), we measure the ensemble average, complex, frequency dependent impedance (from 0.1 Hz to 1 MHz) between a purified (99.9%) semiconducting nanotube network and an aqueous electrolyte (KCI) at different concentrations between 10 mM and 1 M. The potential dependence of the capacitance is convoluted with the potential dependence of the in-plane conductance of the nanotube network, which we model using a transmission-line model to account for the frequency dependent in-plane impedance as well as the total interfacial impedance between the network and the electrolyte. The ionic strength dependence of the capacitance is expected to have a root cause from the double layer capacitance, which we model using a modified Poisson-Boltzmann equation. The relative contributions from those two capacitances can be quantitatively decoupled. We find a total capacitance per tube of 0.67-1.13 fF/mu m according to liquid gate potential varying from -0.5 to -0.7 V.
机译:我们对一维电子材料和电解质之间的电化学电容进行了全面的研究。与传统的平面电极相反,电极的纳米级尺寸(直径小于去德义长度并接近离子的尺寸)定性地改变了我们测量和模型的电容。此外,这些低尺寸电子系统中的状态的有限密度导致量子电容,其与电化学电容相当。使用电化学阻抗光谱(EIS),我们测量纯化(99.9%)半导体纳米管网和在10mm之间的不同浓度的纯化(99.%)半导体纳米管网和水性电解质(KCI)之间的集合平均值,复合频率依赖性阻抗(0.1Hz至1MHz)和1 M.电容的电位依赖性随着纳米管网络的面内电导的电位依赖性,我们使用传输线模型来计算频率依赖于平面阻抗以及网络与电解质之间的总界面阻抗。预期电容的离子强度依赖性具有来自双层电容的根本原因,我们使用改进的泊松 - Boltzmann方程模型。这两个电容的相对贡献可以定量地解耦。根据-0.5至-0.7 V的液体栅极电位,我们发现每管的总电容为0.67-1.13 ff / mu m。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号