首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Control of bacterial attachment by fracture topography
【24h】

Control of bacterial attachment by fracture topography

机译:通过断裂形貌控制细菌附着物

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the biomedical arena, bacterial fouling is a precursor to complications such as implant infection and nosocomial infection. These complications are further compounded by biochemical mechanisms of resistance that threaten the action of traditional antibacterial strategies. Accordingly, antibacterial property by physical, not biochemical, mechanisms of action is becoming increasingly popular and promising. The present work falls in line with this paradigm shift. Here, microtextured Ti-6Al-4V surfaces were manufactured by destructive tension at three different cross-head speeds, probed with scanning electron microscopy (SEM) and multifocus optical microscopy, and treated with Staphylococcus aureus to study bacterial attachment. The fractographic study revealed the presence of dual-mode fracture, typical of Ti-6Al-4V, comprising regions of both ductile, microvoid coalescence and brittle, cleavage faceting. Based on load-extension curves, quantitative roughness data, and qualitative SEM visualisation, it was evident that cross-head speed modulated fracture behaviour such that increased speed produced more brittle fracture whilst lower speeds produced more ductile fracture. The topography associated with ductile fracture was found to possess notable antibiofouling property due to geometric constrains imposed by the coalesced microvoids. Accordingly, fracture at low cross-head speeds (1 mm/min and 10 mm/min) yielded significant reduction in bacterial attachment, whilst fracture at high cross-head speeds (100 mm/min) did not. The greatest reduction (similar to 72%) was achieved at a cross-head speed of 1 nun/min. These findings suggest that antibiofouling property can be elicited by fracture and further 'tuned' by fracture speed. Discovery of this novel, albeit simple, avenue for topography-mediated antibacterial property calls for further research into alternate techniques for the manufacture of 'physical antibacterial surfaces'.
机译:在生物医学舞台中,细菌结垢是一种对植入感染和医院感染等并发症的前体。这些并发症通过生化的抗性机制进一步复杂化,威胁到传统抗菌策略的作用。因此,通过物理,而不是生化,行动机制的抗菌性越来越受欢迎和有前途。目前的工作符合这个范式转变。这里,通过扫描电子显微镜(SEM)和多聚焦光学显微镜探测,用扫描电子显微镜(SEM)和多孔光学探测,用扫描电子显微镜(SEM)和多孔金黄色葡萄球菌处理,并用葡萄球菌进行破坏性张力,以研究细菌附着物。 Fretography研究显示了双模骨折的存在,典型的Ti-6Al-4V,包括延性,微脂糖聚结和脆性裂解的区域。基于负载延伸曲线,定量粗糙度数据和定性SEM可视化,显然是交叉头调速裂缝行为,使得增加的速度增加了更脆性的骨折,同时较低的速度产生更多的延展性裂缝。发现与延展性骨折相关的地形具有由于聚结微管凝固的几何约束而具有值得注意的抗体性质。因此,低交叉速度(1mm / min和10mm / min)的断裂产生了细菌附着的显着降低,而高交叉速度(100mm / min)的裂缝则没有。在1 nun / min的十字速度下实现最大的减少(类似于72%)。这些发现表明,抗骨折性能可以通过骨折和进一步的“调谐”引起裂缝速度。发现这部小说,虽然简单,地形介导的抗菌属性的大道呼吁用于制造“物理抗菌表面”的交替技术进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号