首页> 外文期刊>Journal of geophysical research. Planets >The structure of terrestrial bodies: Impact heating, corotation limits, and synestias
【24h】

The structure of terrestrial bodies: Impact heating, corotation limits, and synestias

机译:地面结构的结构:影响加热,刻度限制和句子

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

During accretion, terrestrial bodies attain a wide range of thermal and rotational states, which are accompanied by significant changes in physical structure (size, shape, pressure and temperature profile, etc.). However, variations in structure have been neglected in most studies of rocky planet formation and evolution. Here we present a new code, the Highly Eccentric Rotating Concentric U (potential) Layers Equilibrium Structure (HERCULES) code, that solves for the equilibrium structure of planets as a series of overlapping constant-density spheroids. Using HERCULES and a smoothed particle hydrodynamics code, we show that Earth-like bodies display a dramatic range of morphologies. For any rotating planetary body, there is a thermal limit beyond which the rotational velocity at the equator intersects the Keplerian orbital velocity. Beyond this corotation limit (CoRoL), a hot planetary body forms a structure, which we name a synestia, with a corotating inner region connected to a disk-like outer region. By analyzing calculations of giant impacts and models of planet formation, we show that typical rocky planets are substantially vaporized multiple times during accretion. For the expected angular momentum of growing planets, a large fraction of post-impact bodies will exceed the CoRoL and form synestias. The common occurrence of hot, rotating states during accretion has major implications for planet formation and the properties of the final planets. In particular, the structure of post-impact bodies influences the physical processes that control accretion, core formation, and internal evolution. Synestias also lead to new mechanisms for satellite formation. Finally, the wide variety of possible structures for terrestrial bodies also expands the mass-radius range for rocky exoplanets. Plain Language Summary During the end stage of planet formation, planets collide together and produce bodies that are partially vaporized and rapidly rotating. In this work, we developed new techniques to calculate the shape and internal pressures of hot, rotating, Earth-like planets. We find that rocky planets can have a variety of shapes and sizes. In addition, for certain combinations of thermal energy and rotation rate, a planet cannot rotate as if it were a solid body. Beyond this corotation limit, the planet has an inner region that is rotating at a single rate connected to a disk-like outer region with orbital velocities. The dynamics of this extended structure are significantly different than a normal planet, so we gave the extended structure a name: a synestia. We show that rocky planets are vaporized multiple times during their formation and are likely to form synestias. The different structures of hot, rotating planets change our understanding of multiple aspects of planet formation, including the origin of our Moon.
机译:在吸收过程中,陆体体达到各种热和旋转状态,伴随着物理结构的显着变化(尺寸,形状,压力和温度曲线等)。然而,在大多数岩石行星形成和进化的大多数研究中,结构的变化被忽略了。在这里,我们提出了一种新的代码,高度偏心的旋转同心U(电位)层平衡结构(赫拉克勒斯)代码,其解决了行星的平衡结构作为一系列重叠的恒定密度球状体。使用赫拉克勒斯和平滑的粒子流体动力学代码,我们表明地球状体表现出戏剧性的形态。对于任何旋转的行星体,存在超出该阀体处的旋转速度与开纱轨道速度相交的热限制。除了这种光学限制(Corol)之外,热行星体形成一个结构,我们将其命名句子,其具有连接到圆盘状外部区域的电气内部区域。通过分析计算巨型影响和行星形成模型,我们表明典型的岩石行星在增生期间大幅蒸发。对于生长行星的预期角动量,大部分后冲击机构将超过Corol并形成句子。在增生期间的常见发生,旋转状态具有对行星形成和最终行星的性质的重大影响。特别地,后冲击机构的结构影响控制增生,核心形成和内部进化的物理过程。句子还导致卫星形成的新机制。最后,陆地体的各种可能的结构也扩大了岩石外部岩石的质量半径范围。普通语言概要在行星形成的末端阶段,行星在一起碰撞并产生部分蒸发和快速旋转的机身。在这项工作中,我们开发了新技术,以计算热,旋转,像地球的形状和内部压力。我们发现岩石行星可以具有各种形状和尺寸。另外,对于某些热能和旋转速率的组合,行星不能旋转,就像它是固体一样。除了这种光学限制之外,该行星具有内部区域,该内部区域以连接到具有轨道速度的盘状外部区域的单个速率旋转。这种扩展结构的动态比正常行星显着不同,因此我们给出了扩展结构一个名称:句子。我们表明,在其形成期间,岩石行星在多次蒸发,并且可能形成句子。热,旋转行星的不同结构改变了我们对行星形成的多个方面的理解,包括月球的起源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号