首页> 外文期刊>Polymer bulletin >Chemically grown mesoporous f-CNT/-MnO2/PIn nanocomposites as electrode materials for supercapacitor application
【24h】

Chemically grown mesoporous f-CNT/-MnO2/PIn nanocomposites as electrode materials for supercapacitor application

机译:化学生长的介孔F-CNT / -MNO2 / PIN纳米复合材料作为超级电容器应用的电极材料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hydrothermally synthesized -MnO2 nanorods-decorated functionalized carbon nanotube wrapped with polyindole was fabricated as an electrode material via chemical oxidative in situ polymerization process. Droplet-like nanostructures with small holes of polyindole and dimple fracture, followed by microvoids in the ternary blend f-CNT/-MnO2/polyindole (CMP), revealed mesoporous nanostructure which provided suitable path for ion transfer into the interface of the electrode material resulting in excellent conductivity. The electrochemical features of CMP were studied by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopic (EIS) techniques. The novel electrode material CMP delivered high gravimetric capacitance of 421Fg(-1) at current density 2Ag(-1) in three electrode systems with 1M KCl as an electrolyte. With mass loading 0.15mgcm(-2), the areal capacitance for CMP nanocomposite was calculated 63mFcm(-2). The long lifespan with 92.1% specific capacitance retention revealed better cyclic stability of the said material at high current density 5Ag(-1) after 5000 consecutive cycles. Low ESR value of 0.36 for CMP was estimated through EIS technique. These results remarkably encouraged the supercapacitive performance of the said nanocomposite and paved the path for novel category of electrode material as promising candidate for supercapacitor application.
机译:通过化学氧化在原位聚合方法中,用聚吲哚包包裹的水热合成的 - 装饰官能化碳纳米管作为电极材料。液滴状纳米结构,具有小孔的聚吲哚和凹陷骨折,然后在三元共混物F-CNT / -MNO2 /聚吲哚(CMP)中进行微脂,揭示了介孔纳米结构,其提供了适当的离子转移到电极材料的界面中的合适路径在优异的导电性。通过采用循环伏安法,电镀电荷 - 放电和电化学阻抗光谱(EIS)技术研究了CMP的电化学特征。新型电极材料CMP在具有1M KCl的三个电极系统中以1M KCL为电解质在电流密度2Ag(-1)的高重量电容为421Fg(-1)的高重量电容。大量负荷0.15mgcm(-2),计算CMP纳米复合材料的面积电容63mFcm(-2)。具有92.1%的特定电容保留的长寿命揭示了在5000个连续循环之后在高电流密度5Ag(-1)下所述材料的更好的循环稳定性。通过EIS技术估计CMP为0.36的低ESR值。这些结果显着促进了所述纳米复合材料的超级电容性能,并为超级电容器应用的有望候选者铺设了新型电极材料类别的路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号