首页> 外文期刊>Smart Materials & Structures >Dynamics of acoustic impedance matching layers in contactless ultrasonic power transfer systems
【24h】

Dynamics of acoustic impedance matching layers in contactless ultrasonic power transfer systems

机译:非接触式超声波动力传输系统中声阻抗匹配层的动态

获取原文
获取原文并翻译 | 示例
       

摘要

The acoustic impedance mismatch between transducer materials and medium in ultrasonic power transfer systems narrows the transduction bandwidth and causes losses through the back reflection of progressive pressure waves at the boundary between the transducers and medium. Capturing both resonances and losses due to impedance mismatch of interwoven elements is essential for advancing the development of these systems. We present a unified approach, based on the multiplication of a sequence of transfer matrices, to determine an equivalent acoustic impedance. The analytical model couples the properties of the transmitter and receiver with multiple matching layers and a single classical quarter-wave layer in controlled setups with the objective of minimizing reflections through acoustic impedance mismatch alleviation. Losses due to ultrasonic attenuation in the material layers and medium are also considered. The acoustic field at the receiver location constitutes the input to the coupled electro-elastic equations of the fluid-loaded and electrically-loaded piezoelectric receiver. Experiments are performed to identify the input acoustic pressure from a cylindrical transmitter to a receiver disk operating in the 33-mode of piezoelectricity. The results show significant enhancements in terms of the receiver's electrical power output when implementing a two-layer matching structure. We present the results showing non-dimensional wave number variations versus characteristic impedance, which can be used to calculate the materials' thicknesses for acoustically matching ultrasonic power transfer systems to an acoustic medium of interest at any desired resonant frequency while considering any type of glue or epoxy as the bonding layer. The derived physical models facilitate the development of high-fidelity matched systems with enhanced contactless power transmission.
机译:超声波动力传输系统中的换能器材料和介质之间的声阻抗不匹配缩小了转导带宽,并通过换能器和介质之间的边界处的渐进压力波的背反射损耗。由于接合元素的阻抗不匹配而捕获共振和损失对于推进这些系统的发展至关重要。我们基于一系列传输矩阵的乘法来提出统一的方法,以确定等效的声阻抗。分析模型将发射器和接收器的特性与多个匹配层和控制设置中的单个古典四分之一波层耦合,其目的是通过声阻抗失配减少最小化反射。还考虑了材料层和培养基中的超声衰减引起的损失。接收器位置处的声场构成了流体负载和导电压电接收器的耦合电弹性方程的输入。进行实验以将从圆柱发射器识别到在33模式中操作的接收器盘的输入声压。结果在实现双层匹配结构时,在接收器的电力输出方面表现出显着的增强。我们介绍了显示非尺寸波数变化与特征阻抗的结果,其可用于计算在考虑任何所需的谐振频率时对声学匹配的材料的厚度,同时考虑任何类型的胶合或环氧作为粘合层。衍生的物理模型有助于开发具有增强的非接触式电力传输的高保真匹配系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号