首页> 外文期刊>International Journal of Fracture >The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal
【24h】

The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal

机译:第三个阳光裂缝挑战:塑性骨折在瘾地制造金属中的预测

获取原文
           

摘要

The Sandia Fracture Challenges provide a forum for the mechanics community to assess its ability to predict ductile fracture through a blind, round-robin format where mechanicians are challenged to predict the deformation and failure of an arbitrary geometry given experimental calibration data. The Third Challenge (SFC3) required participants to predict fracture in an additively manufactured (AM) 316L stainless steel bar containing through holes and internal cavities that could not have been conventionally machined. The volunteer participants were provided extensive data including tension and notched tensions tests of 316L specimens built on the same build-plate as the Challenge geometry, micro-CT scans of the Challenge specimens and geometric measurements of the feature based on the scans, electron backscatter diffraction (EBSD) information on grain texture, and post-test fractography of the calibration specimens. Surprisingly, the global behavior of the SFC3 geometry specimens had modest variability despite being made of AM metal, with all of the SFC3 geometry specimens failing under the same failure mode. This is attributed to the large stress concentrations from the holes overwhelming the stochastic local influence of the AM voids and surface roughness. The teams were asked to predict a number of quantities of interest in the response based on global and local measures that were compared to experimental data, based partly on Digital Image Correlation (DIC) measurements of surface displacements and strains, including predictions of variability in the resulting fracture response, as the basis for assessment of the predictive capabilities of the modeling and simulation strategies. Twenty-one teams submitted predictions obtained from a variety of methods: the finite element method (FEM) or the mesh-free, peridynamic method; solvers with explicit time integration, implicit time integration, or quasi-statics; fracture methods including element deletion, peridynamics with bond damage, XFEM, damage (stiffness degradation), and adaptive remeshing. These predictions utilized many different material models: plasticity models including J2 plasticity or Hill yield with isotropic hardening, mixed Swift-Voce hardening, kinematic hardening, or custom hardening curves; fracture criteria including GTN model, Hosford-Coulomb, triaxiality-dependent strain, critical fracture energy, damage-based model, critical void volume fraction, and Johnson-Cook model; and damage evolution models including damage accumulation and evolution, crack band model, fracture energy, displacement value threshold, incremental stress triaxiality, Cocks-Ashby void growth, and void nucleation, growth, and coalescence. Teams used various combinations of calibration data from tensile specimens, the notched tensile specimens, and literature data. A detailed comparison of results based of these different methods is presented in this paper to suggest a set of best practices for modeling ductile fracture in situations like the SFC3 AM-material problem. All blind predictions identified the nominal crack path and initiation location correctly. The SFC3 participants generally fared better in their global predictions of deformation and failure than the participants in the previous Challenges, suggesting the relative maturity of the models used and adoption of best practices from previous Challenges.
机译:桑迪亚骨折挑战为机械界提供了一个论坛,以评估其通过盲目的循环格式来预测延展性骨折的能力,其中机械师受到挑战的挑战,以预测给定实验校准数据的任意几何形状的变形和失效。第三次挑战(SFC3)所需参与者在含有孔和内腔中的含有孔和内腔的含有孔和内腔中的含有孔和内腔中的骨折预测。志愿参与者提供了广泛的数据,包括316L标本的张力和缺口紧张局部试验,该试验在与挑战几何形状,微型CT扫描基于扫描的特征,电子反向散射衍射的挑战样本和几何测量(EBSD)有关谷物质地的信息,以及校准标本的测试后变形术。令人惊讶的是,尽管由AM金属制成,但SFC3几何标本的全局行为具有适度的可变性,所有SFC3几何样本都在相同的故障模式下发生故障。这归因于来自孔的大应力浓度,从而强大的是AM空隙和表面粗糙度的随机局部影响。这些团队要求基于与实验数据相比的全球和本地措施的响应预测了许多兴趣,其中基于实验数据,部分地基于表面位移和菌株的数字图像相关性(DIC)测量,包括可变异性的预测导致骨折反应,作为评估建模和模拟策略的预测能力的基础。二十一支队伍提交了各种方法中获得的预测:有限元方法(FEM)或无网状,白动力学方法;具有明确时间集成,隐式时间集成或准静态的求解器;骨折方法包括元素缺失,闭合性损伤,XFEM,损伤(刚度降解)和自适应倒闭。这些预测利用了许多不同的材料模型:可塑性模型,包括J2可塑性或山坡产量,具有各向同性硬化,混合迅速 - voce硬化,运动硬化或定制硬化曲线;骨折标准,包括GTN模型,Hosford-Coulomb,三轴性依赖性应变,临界裂缝能量,基于损伤的模型,临界空隙量分数和Johnson-Cook Model;和损坏的演化模型,包括损伤积累和演化,裂缝带模型,断裂能量,位移值阈值,增量应激三轴性,鸡舍 - 灰,无核成核,生长和聚结。团队使用来自拉伸试样,缺口拉伸样品和文献数据的各种校准数据组合。本文提出了基于这些不同方法的结果的详细比较,提出了一系列最佳实践,用于在SFC3 AM-物质问题的情况下模拟延性骨折。所有盲预测均正确识别标称裂缝路径和启动位置。 SFC3参与者在全球变形和失败的全球预测方面普遍更好地比以往的挑战中的参与者的变形和失败的预测更好,这表明所使用的模型的相对成熟和采用以前挑战的最佳实践。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号