首页> 外文期刊>Advanced Powder Technology: The internation Journal of the Society of Powder Technology, Japan >Effect of operating parameters on the transient behavior of gravity-assisted heat-pipe using radio-chemically prepared Al2O3 nano-fluid
【24h】

Effect of operating parameters on the transient behavior of gravity-assisted heat-pipe using radio-chemically prepared Al2O3 nano-fluid

机译:放射性化学制备的Al2O3纳米流体对工作参数对重力辅助热管瞬态行为的影响

获取原文
获取原文并翻译 | 示例
       

摘要

A simple network model is derived for describing the transient response of a two-phase gravity-assisted heat-pipe at startup, steady, and shutdown states using Al2O3 nano-fluid. In order to obtain a stable suspension of 4% Al2O3 nano-fluid aluminum oxide particles are coated with polyethlene glycol (PEG), then dispersed in a 2-hydroxyethyl methacrylate (HEMA) solution, and after that subjected to gamma irradiation at different doses. The heat pipe is divided into two heat carriers; evaporator and condenser. An energy balance for each carrier is carried out to estimate temperatures, heat transfer coefficients, thermal resistances, time constants, and other thermal characteristics at three different heat loads; 500, 1000, and 1500 W. Governing equations of the transient behavior can be simplified into first-order linear ordinary differential equations, which can be solved by the linear algebra formalism method yielding the heat-pipe temperatures. The transient response of a gravity-assisted heat pipe is found to depend mainly on the average evaporator thermal resistance. Increasing the heat loads causes a sharp reduction in the thermal resistance and in the time constants, which leads to better performance of the heat pipe. The evaporator and condenser heat transfer coefficients are thus found to increase with increasing power, so that at 500 W heat load the obtained evaporator heat transfer coefficient at steady state is approximately 100 W/m(2) degrees C, while doubling the heat load causes he to increase to as much as 1100 W/m(2) degrees C; i.e. more than 10 times the value attained with half that load. Increasing the heat load further to 1500 W gives about 3900 W/m(2) degrees C; i.e. more than 3 times the value obtained with 1000 W. The variation in the corresponding values of the condenser heat transfer coefficients are much less than those obtained for the evaporator as they lie in the range of 1534-1557 W/m(2) degrees C at heat loads 500 up to 1500 W. The effect of adding 4 vol.% Al2O3 nanoparticles to water is investigated by estimating the physical properties of the nanofluid at steady state for the three investigated input powers and comparing them with those of water. The most important feature of them is the thermal conductivity, which is found to increase by 27% above that of water. The dynamic viscosity of the 4 vol.% Al2O3 nano-fluid is found to increase by 10% over all selected powers. The replacement of ordinary cooling fluid with nano-fluid has thus no noticeable effect on the flow dynamics but it considerably enhances the heat transfer properties. (C) 2016 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
机译:推导了一个简单的网络模型,用于描述使用Al2O3纳米流体在启动,稳态和停机状态下两相重力辅助热管的瞬态响应。为了获得稳定的4%Al2O3悬浮液,用聚乙二醇(PEG)涂覆纳米流体氧化铝颗粒,然后将其分散在甲基丙烯酸2-羟乙酯(HEMA)溶液中,然后对其进行不同剂量的γ辐射。热管分为两个热载体。蒸发器和冷凝器。在三个不同的热负荷下,对每个载体进行能量平衡以估计温度,传热系数,热阻,时间常数和其他热特性。 500、1000和1500W。瞬态行为的控制方程可以简化为一阶线性常微分方程,可以通过产生热管温度的线性代数形式方法来求解。发现重力辅助热管的瞬态响应主要取决于平均蒸发器热阻。增加热负荷会导致热阻和时间常数急剧下降,从而导致热管性能更好。因此发现蒸发器和冷凝器的传热系数随功率的增加而增加,因此在500 W的热负荷下,稳态时获得的蒸发器的传热系数约为100 W / m(2)摄氏度,而使热负荷增加一倍他将温度提高到1100 W / m(2)摄氏度;即超过一半负载所达到的值的10倍以上。将热负荷进一步增加到1500 W,可以得到大约3900 W / m(2)摄氏度。即大于1000 W时获得的值的3倍。冷凝器传热系数的相应值的变化远小于蒸发器获得的值,因为它们在1534-1557 W / m(2)度的范围内C在500到1500 W的热负荷下。通过估计三种研究输入功率在稳态下纳米流体的物理性质并将其与水进行比较,研究了向水中添加4%(体积)Al2O3纳米粒子的效果。它们的最重要特征是导热率,发现导热率比水提高了27%。发现在所有选定功率下,4%(体积)Al2O3纳米流体的动态粘度增加了10%。因此,用纳米流体代替普通的冷却流体对流动动力学没有明显的影响,但是却大大提高了热传递性能。 (C)2016日本粉末技术学会。由Elsevier B.V.和日本粉末技术学会出版。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号