首页> 外文期刊>Agricultural and Forest Meteorology >Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical fluxes from tower-based eddy covariance
【24h】

Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical fluxes from tower-based eddy covariance

机译:框中的表面大气交换:基于塔的涡旋间协方差的时空解决存储和净垂直通量

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Systematic bias in eddy-covariance flux measurements are pervasive. These arise both from unmeasured terms such as advection, and sampling bias in representativeness of the footprint for both turbulent and storage fluxes. As a result, the majority of eddy-covariance towers suffer from unaccounted bias when comparing to gridded earth system models and fail to close the surface energy balance. We hypothesize that one cause for these two problems is a mismatch between mass and energy fluxes measured within a time-varying source area and the actual storage and net vertical flux over a presumed "control volume", a novel concept derived theoretically in Metzger (this issue). Here, we practically implement this theory to estimate the true net surface-atmosphere exchange (NSAE) over such control volume, thus resolving "storage flux" and "vertical advection" issues by applying the environmental response function (ERF) technique to a virtual control volume (VCV). In this method, flux observations are related at high spatio-temporal resolution to meteorological forcings and surface properties within the estimated flux footprint, and these relationships are utilized to map the control volume explicitly in 3-D over space and time. Volume integration then allows, for the first time, retrieval of the NSAE. When ERF was applied to eddy covariance and profile observations in July and August 2014 from the AmeriFlux Park Falls WLEF tower in Wisconsin, USA, heat emission integrated over the target domain increased substantially over the tower observations by + 18.2 Wm(-2) (+ 20.6%). Storage flux contributes up to 30% of NSAE at hourly timescale. The systematic uncertainty of ERF-VCV method applied for vertical flux and storage flux is within 15% and 20%, respectively. This systematic uncertainty is effectively corrected in projections. Volume-controlled NSAE provides improvements for mapping unbiased surface-atmosphere exchange for model-data comparison, assimilation and model building at model grid scale. These advances also present a promising direction for reconciling energy balance non-closure.
机译:涡旋协方差磁通测量中的系统偏差是普遍存在的。这些来自未测量的术语,如平流,以及湍流和储存通量的足迹的代表性的取样偏差。因此,当与网格地球系统模型相比,大多数涡涡塔遭受了未计算的偏差,并且未能关闭表面能量平衡。我们假设这两个问题的一个原因是在一个时变源区和预测的“控制卷”中测量的质量和能量通量之间的质量和能量通量之间的不匹配,从理论上达到梅尔兹格(这个问题)。在这里,我们实际上实现了这种理论来估计真正的净表面 - 大气交换(NSAE)在这种控制体积上,从而通过将环境响应函数(ERF)技术应用于虚拟控制来解决“存储通量”和“垂直平流”问题卷(VCV)。在该方法中,通量观测在高时空分辨率下与估计的通量占地面积内的气象强制和表面特性相关,并且这些关系用于在空间和时间内明确地将控制体积映射到3-D中。然后,卷集成然后允许首次检索NSAE。当ERF于2014年7月和2014年8月的Eddy Covariance和Profile观测到美国威斯康星州威斯康星州威斯康星州的沼泽地威尔夫塔时,在塔塔观测结果上达到靶域中的散热量增加了+ 18.2 WM(-2)(+ 20.6%)。储存助焊剂在每小时占用的占NSAE的30%。施加垂直通量和储存通量的ERF-VCV方法的系统不确定性分别在15%和20%以内。在预测中有效地校正了这种系统的不确定性。体积控制的NSAE提供了用于在模型网格规模上进行模型数据比较,同化和模型建设的模型数据比较,同化和模型建设的映射无偏的表面大气交换的改进。这些进步还为协调能量平衡非关闭的有希望的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号