首页> 外文期刊>CrystEngComm >Self-assembly pore-forming mechanism of foam boundary templates and the preparation of porous strontium hydroxyapatite microspheres by homogeneous precipitation
【24h】

Self-assembly pore-forming mechanism of foam boundary templates and the preparation of porous strontium hydroxyapatite microspheres by homogeneous precipitation

机译:泡沫边界模板的自组装孔形成机理及均相沉淀的多孔羟基磷灰石微球的制备

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Using ethylenediaminetetraacetic acid (EDTA) as a chelating agent and urea as a directional template, we report an effective method for the synthesis of porous strontium hydroxyapatite (SrHAp) microspheres employing homogeneous precipitation. More importantly, we can easily control the pore size (d) of porous SrHAp microspheres through the elaborate choice of reaction temperature (T) at atmospheric pressure. The experimental results show that the d of porous SrHAp microspheres rises gradually with the increase of T. In addition, with the increase of reaction time at the same T, the d of the microspheres remained unchanged, but the diameter of porous SrHAp microspheres gradually increased, and remained unchanged after 36 h. According to the Laplace equation, Kelvin equation and Clapeyron equation, the relationship of d and T is deduced as follows: . The experimental data (T, d) agreed with it. In particular, based on the unique role of EDTA and CO2 bubbles (urea hydrolysis) in the preparation of porous SrHAp microspheres, the self-assembly pore-forming mechanism of foam boundary templates was proposed. First, urea was hydrolyzed to produce CO2 bubbles (foam boundary template) and OH-, and EDTASr (EDTA chelates strontium ions) and H3O+ (acidic system) formed a liquid film-chelating ion electronic double layer (LFCIEDL) on the surface of CO2 bubbles, which not only chelated and located Sr2+, but also formed a stable foam boundary template. Secondly, Sr2+, H2PO4- and OH- were homogeneously nucleated in the Plateau borders among the bubbles. After that, along the bubble liquid film surface, Sr2+ is orientationally released from the outer edge to the inner. SrHAp lamellae were formed by self-assembly method, then they were interconnected. In addition, OH- produced by urea hydrolysis continuously provides power for self-assembly oriented growth. Finally OH- completely destroys the LFCIEDL on the surface of the bubble, causing the bubble to break, and the porous SrHAp microspheres are formed.
机译:使用乙二胺四乙酸(EDTA)作为螯合剂和尿素作为定向模板,我们报告了一种有效的方法,用于合成采用均匀沉淀的多孔锶羟基磷灰石(SRHAP)微球。更重要的是,我们可以通过在大气压下精细选择反应温度(t)来容易地控制多孔SRHAP微球的孔径(d)。实验结果表明,随着T的增加,多孔SRHAP微球的D逐渐上升。另外,随着反应时间的增加,微球的D保持不变,但多孔SRHAP微球的直径逐渐增加,36小时后保持不变。根据拉普拉文方程,开尔文方程和塞拉顿方程,D和T的关系如下推导出:。实验数据(t,d)同意它。特别地,基于EDTA和CO2气泡(尿素水解)在制备多孔SRHAP微球中的独特作用,提出了泡沫边界模板的自组装孔形成机制。首先,水解尿素以产生CO 2气泡(泡沫边界模板)和OH-,EDTASR(EDTA螯合物锶离子)和H3O +(酸性系统)在CO2的表面上形成液体膜螯合离子电子双层(LFCIEDL)气泡不仅螯合和位于SR2 +,还形成了稳定的泡沫边界模板。其次,SR2 +,H2PO4-和OH-在泡沫中的高原边界中均匀核。之后,沿着气泡液体膜表面,SR2 +从外边缘到内部释放到内部。通过自组装方法形成SRHAP薄片,然后互连。另外,通过尿素水解的OH--连续提供用于自组装取向生长的动力。最后,OH-完全破坏气泡表面上的LFCIEDL,导致气泡破裂,形成多孔SRHAP微球。

著录项

  • 来源
    《CrystEngComm》 |2019年第37期|共7页
  • 作者单位

    Wuhan Inst Technol Sch Mat Sci &

    Engn Wuhan 430074 Hubei Peoples R China;

    Wuhan Inst Technol Sch Mat Sci &

    Engn Wuhan 430074 Hubei Peoples R China;

    Wuhan Inst Technol Sch Mat Sci &

    Engn Wuhan 430074 Hubei Peoples R China;

    Wuhan Inst Technol Sch Mat Sci &

    Engn Wuhan 430074 Hubei Peoples R China;

    Wuhan Inst Technol Sch Mat Sci &

    Engn Wuhan 430074 Hubei Peoples R China;

    Wuhan Inst Technol Sch Mat Sci &

    Engn Wuhan 430074 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;晶体学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号