首页> 外文期刊>Advances in applied Clifford algebras >A New Polar Representation for Split and Dual Split Quaternions
【24h】

A New Polar Representation for Split and Dual Split Quaternions

机译:用于分割和双分裂四分之二的新极地表示

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We present a new different polar representation of split and dual split quaternions inspired by the Cayley-Dickson representation. In this new polar form representation, a split quaternion is represented by a pair of complex numbers, and a dual split quaternion is represented by a pair of dual complex numbers as in the Cayley-Dickson form. Here, in a split quaternion these two complex numbers are a complex modulus and a complex argument while in a dual split quaternion two dual complex numbers are a dual complex modulus and a dual complex argument. The modulus and argument are calculated from an arbitrary split quaternion in Cayley-Dickson form. Also, the dual modulus and dual argument are calculated from an arbitrary dual split quaternion in Cayley-Dickson form. By the help of polar representation for a dual split quaternion, we show that a Lorentzian screw operator can be written as product of two Lorentzian screw operators. One of these operators is in the two-dimensional space produced by 1 and i vectors. The other is in the three-dimensional space generated by 1, j and k vectors. Thus, an operator in a four-dimensional space is expressed by means of two operators in two and three-dimensional spaces. Here, vector 1 is in the intersection of these spaces.
机译:我们提出了一种由Cayley-Dickson表示的分裂和双分裂四元数的新不同极地表示。在这种新的极性形式表示中,分开的四元数由一对复数表示,并且双分割四元数由一对双重复数号表示,如Cayley-Dickson形式。这里,在分开的四元线中,这两个复数是复数的复杂模量,而在双分割四元数中,两个双重复数号是双重复数和双重复杂参数。模量和参数由Cayley-Dickson形式的任意分裂四元数计算。此外,双模数和双参数由Cayley-Dickson形式的任意双分型四元数计算。通过双重分割四元素的极地表示的帮助,我们表明Lorentzian螺旋操作员可以写成两个Lorentzian螺杆操作员的产品。其中一个运算符在1和I向量产生的二维空间中。另一个是由1,j和k载体产生的三维空间。因此,四维空间中的操作者通过两个和三维空间中的两个操作者表示。这里,向量1处于这些空间的交叉点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号