首页> 外文期刊>Computational Materials Science >Phase-field modeling of Li-insertion kinetics in single LiFePO 4-nano-particles for rechargeable Li-ion battery application
【24h】

Phase-field modeling of Li-insertion kinetics in single LiFePO 4-nano-particles for rechargeable Li-ion battery application

机译:单一LiFepo中锂插入动力学的相场建模 4 -NANO-粒子用于可充电锂离子电池的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We develop a continuum phase-field model for the simulation of diffusion limited solid-solid phase transformations during lithium insertion in LiFePO4-nano-particles. The solid-solid phase boundary between the LiFePO4(LFP)-phase and the FePO4(FP)-phase is modeled as a diffuse interface of finite width. The model-description explicitly resolves a single LiFePO4-particle, which is embedded in an elastically soft electrolyte-phase. Furthermore, we explicitly include anisotropic (orthorhombic) and inhomogeneous elastic effects, resulting from the coherency strain, as well as anisotropic (1D) Li-diffusion inside the nano-particle. In contrast to other related research work, we employ an Allen-Cahn-type phase-field approach for the diffuse interface modeling of the solid-solid phase boundary. The model contains an extra non-conserved order parameter field to distinguish the two different phases. The evolution of this order parameter field is controlled by an extra kinetic parameter independent from the Li-diffusion. Further, the effect of the nano-particle’s size on the kinetics of FP to LFP phase transformations is investigated by means of both model. Both models predict a substantial increase in the steady state transformation velocity as the particle-size decreases down to dimensions that are comparable with the width of the interface between the FP and the LFP-phase. However, the extra kinetic parameter of the Allen-Cahn-type description may be used to reduce the strength of the velocity-increase with the decreasing particle size. Further, we consider the influence of anisotropic and inhomogeneous elasticity on the lithiation-kinetics within a rectangularly shaped LiFePO4-particle embedded in an elastically soft electrolyte. Finally, the simulation of equilibrium shapes of LiFePO4-particles is discussed. Within a respective feasibility study, we demonstrate that also the simulation of strongly anisotropic particles with aspect ratios up to 1/5 is possible.
机译:我们开发了在LiFePO4-纳米粒子中锂插入锂插入过程中的扩散有限固体相变的连续阶段阶段模型。 LiFePO4(LFP) - 双相和FEPO4(FP)-Phase之间的固体相位边界被建模为有限宽度的漫射界面。模型描述明确地解析了单个LifePO4粒子,该粒子嵌入弹性柔软的电解质阶段。此外,我们明确地包括各向异性(正畸)和不均匀的弹性效果,由纳米颗粒内的一致性菌株以及各向异性(1D)Li-​​扩散产生。与其他相关的研究工作相比,我们采用了固体相位边界的漫反射界面建模的艾伦-CAHN型阶段方法。该模型包含额外的非保守订单参数字段,以区分两个不同的阶段。该订单参数字段的演变由独立于LI扩散的额外动力学参数控制。此外,通过两个模型研究了纳米粒子尺寸对FP至LFP相变动力学的影响。由于粒度减小到与FP和LFP相位之间的界面的宽度相比,这两个模型都预测稳态变换速度的显着增加。然而,可以使用Allen-CaHN型描述的额外动力学参数来降低粒径下降的速度强度。此外,我们考虑各向异性和不均匀弹性对嵌入于弹性电解质的矩形寿命4​​-颗粒内的锂化动力学的影响。最后,讨论了LiFePO4-粒子的平衡形状的模拟。在相应的可行性研究中,我们证明了具有高达1/5的纵向比的强各向异性颗粒的模拟是可能的。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号