首页> 外文期刊>Biogeochemistry >Structural and physiological adaptations of soil microorganisms to freezing revealed by position-specific labeling and compound-specific C-13 analysis
【24h】

Structural and physiological adaptations of soil microorganisms to freezing revealed by position-specific labeling and compound-specific C-13 analysis

机译:土壤微生物对冻结的结构和生理调整,揭示了定位特异性标记和特异性C-13分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Psychrotolerant microbes are crucial for carbon cycling and biotechnological applications. Nonetheless, the mechanisms enabling their survival and functioning in frozen environments remain unclear. To elucidate adaptations of microbial cell membranes to freezing, we incubated soils with position-specific C-13 labeled glucose at +5 (control), -5 and -20 degrees C and quantified C-13 in CO2 and phospholipid fatty acids. High oxidation of glucose C-1 at +5 degrees C revealed a transformation via the pentose phosphate pathway. At subzero temperatures, however, the preferential oxidation of C-4 position suggested a switch to glycolysis. The threefold increase of Gram-negative phospholipid fatty acids in soil incubated at -5 degrees C was accompanied by a twofold increase in C-13 incorporation. This unequal increase of phospholipid fatty acids and incorporated C-13 can be explained by simultaneous desaturation of existing fatty acid chains and the de novo synthesis of monounsaturated fatty acids, which indicates microbial growth. In contrast, Gram-positive bacteria incorporated 2 times higher C-13 into their phospholipid fatty acids at -20 degrees C than at -5 and +5 degrees C without a significant increase in their fatty acid contents. This reflects intensive repair of membranes damaged at -20 degrees C without microbial growth. The fungal/bacterial ratio was 1.5 times lower at subzero temperatures than at +5 degrees C, reflecting a shift in microbial community structure towards bacteria. Accordingly, soil microorganisms adapted to freezing by (1) switching their metabolic pathway from the pentose phosphate pathway to glycolysis, (2) modifying phospholipid fatty acids by desaturation and, (3) shifting microbial community structure towards Gram-negative bacteria by reducing the fungal population.
机译:心理溶解微生物对碳循环和生物技术应用至关重要。尽管如此,在冷冻环境中实现其存活和功能的机制仍然不清楚。为了阐明微生物细胞膜对冷冻的调整,我们在CO 2和磷脂​​脂肪酸中用定位特异性C-13标记的葡萄糖孵育土壤。葡萄糖C-1在+ 5℃下的高氧化显示通过戊糖磷酸途径的转化。然而,在亚零温度下,C-4位置的优先氧化表明切换到糖酵解。在-5℃孵育的土壤中革兰阴性磷脂脂肪酸的三倍增加伴随着C-13掺入的双重增加。通过同时去饱和现有的脂肪酸链和单一饱和脂肪酸的德诺人合成来解释磷脂脂肪酸和掺入的C-13的不平等增加,这表明了微生物生长。相比之下,革兰氏阳性细菌在-20℃下掺入它们的磷脂脂肪酸的2倍,而不是在-5和+ 5℃下,其脂肪酸内容物显着增加。这反映了在没有微生物生长的情况下在-20℃下损坏的膜的密集修复。小零温度下的真菌/细菌比在+ 5℃下较低1.5倍,反映了微生物群落结构朝向细菌的变化。因此,适于通过(1)将其代谢途径从戊糖磷酸途径切换到糖醇分解,(2)通过去饱和而改变磷脂脂肪酸,通过减少真菌来改变微生物群落结构的(2)人口。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号