首页> 外文期刊>Journal of Physics. Condensed Matter >Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an ab initio study
【24h】

Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an ab initio study

机译:Teolable 2d-gallium砷和石墨烯带隙在石墨烯/ Gaas异质结构中:AB Initio研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from Gamma-K indirect in isolated monolayer to Gamma-Gamma direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, when applying asymmetric in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene bandgap is open at the Fermi level to a maximum width of 814 meV. This value is much higher than that reported for just graphene under asymmetric strain. The Gamma-Gamma direct bandgap of GaAs remains unchanged in graphene/ GaAs under different types of applied strain. The analyses of phonon dispersion and the elastic constants yield the dynamical and mechanical stability of the graphene/GaAs system, respectively. The calculated mechanical properties for bilayer heterostructure are better than those of their constituent monolayers. This finding, together with the tunable graphene bandgap not only by the strength but also by the direction of the strain, enhance the potential for strain engineering of ultrathin group-III-V electronic devices hybridized by graphene.
机译:已经在沿C轴和不同平面应变分布的单轴应力下,用VAN DAR WAALS异质结构研究了2D-GaAs和石墨烯的带隙行为。在石墨烯/ GaAs双层中,2D-GaAs带隙性质从孤立的单层中的γ-k间接分离为Gamma-gamma。在后者中,石墨烯表现出5米伏的带隙。单轴应力强烈影响石墨烯电子带隙,而对称的面内应变不会在石墨烯中打开带隙。尽管如此,它会对FERMI水平周围的GaAs带隙宽度引起显着的变化。然而,当将不对称的面内菌株施加到石墨烯/ GaAs时,将石墨烯未分解对称性破裂,并且石墨烯带隙在FERMI水平处打开至最大宽度为814MeV。该值远高于仅在不对称菌株下为石墨烯报道的值。在不同类型的应用菌株下,GaAs的Gamma-Gamma直接带隙在石墨烯/ GaAs中保持不变。声子分散和弹性常数的分析分别产生石墨烯/ GaAs系统的动态和机械稳定性。双层异质结构的计算机械性能优于它们的组成单层。这种发现与可调节石墨烯带隙相同,不仅通过强度而且通过应变的方向,增强了由石墨烯杂交的超薄族-III-V电子器件的应变工程的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号