首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer
【24h】

Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer

机译:转向电荷动力学促进了石墨碳氮化物的光催化活性:杂原子介导的空间电荷分离和转移

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Charge kinetics plays a vital role in determining the quantum efficiency of solar-to-chemical conversion in photocatalysis. For most layered compounds, the photocatalytic performance is largely hindered by its sluggish charge transfer kinetics. Herein, we propose a novel strategy-heteroatom-mediated spatial charge separation and transfer-to accelerate photogenerated charge kinetics for boosting the photocatalytic performance of graphitic carbon nitride (CN). Both the experimental results and first-principle calculations show that out-of-plane charge transport and in-plane charge separation within CN nanosheets can be accelerated via F intercalation and B intralayer modification. The B implantation could realize in-plane charge-separation by spatial separation of HOMO and LUMO to promote efficient exciton dissociation, and the F heteroatom, as interlayer electron channel, accelerates the out-of-plane oriented charge transport. The visible-light photocatalytic activity of codoped CN nanosheets is greatly boosted via modulating the charge kinetics, which can be demonstrated by degrading methyl orange and colorless phenol as models. Moreover, the samples exhibit excellent photo-electrocatalysis OER activity, outperforming the metal CoSe2 catalyst. The enhanced catalytic activities are attributed to synergistically utilizing 2D ultrathin structural advantage and accelerating charge kinetics. This work proposes a novel strategy to tune charge carrier separations and migrations in functionalized 2D layered materials for environmental catalysis and advanced energy.
机译:电荷动力学在确定光催化中的太阳能转化率的量子效率方面发挥着至关重要的作用。对于大多数分层化合物,光催化性能主要受其缓慢的电荷转移动力学阻碍。在此,我们提出了一种新的策略 - 杂原子介导的空间电荷分离和转移 - 加速光催化的电荷动力学,以促进石墨氮化物(CN)的光催化性能。实验结果和第一原理计算都显示CN纳米片内的平面外电荷运输和在CN纳米内的面内电荷分离可以通过F插入和B intorAlayer改性加速。 B植入可以通过HOMO和LUMO的空间分离来实现平面电荷分离,以促进有效的激子解离,而F杂原子,作为层间电子通道,加速了面外导向的电荷运输。通过调节电荷动力学,可以通过调节电荷动力学来大大提高了COPED CN纳米片的可见光光催化活性,这可以通过降解甲基橙和无色酚作为模型来证明。此外,样品表现出优异的光电常见oer活性,优于金属COSE2催化剂。增强的催化活性归因于协同利用2D超薄结构优势和加速电荷动力学。这项工作提出了一种新的策略来调整函数载流子分离和函数的官能化2D分层材料的迁移,用于环境催化和先进的能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号