...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Achieving an Optimal T-g Change by Elucidating the Polymer-Nanoparticle Interface: A Molecular Dynamics Simulation Study of the Poly(vinyl alcohol)-Silica Nanocomposite System
【24h】

Achieving an Optimal T-g Change by Elucidating the Polymer-Nanoparticle Interface: A Molecular Dynamics Simulation Study of the Poly(vinyl alcohol)-Silica Nanocomposite System

机译:通过阐明聚合物 - 纳米颗粒接口来实现最佳T-G的变化:聚(乙烯醇) - 硅纳米复合体系的分子动力学模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

The glass-transition temperature (T-g) of a polymer-nanoparticle composite system is strongly dependent on the local segmental dynamics of the polymers. These dynamics, in turn, are dependent on the types of interfacial interactions that exist between the nanoparticle and the polymers. In this work, we investigate the magnitude of T-g change with respect to the polymer-nanoparticle interactions by performing molecular dynamics simulations for a full-atomistic model of poly(vinyl alcohol) (PVA)-silica nanocomposites. Our segmental dynamics analysis and potential of mean force calculations indicate that the strong binding interaction between the hydroxylated-silica surface and the poly(vinyl alcohol) (PVA) is able to induce an increase in the T-g of the composite system with respect to the bulk PVA polymer system. While we expect that the T-g of the system will increase with an increasing amount of hydrogen bonds arising from the increasing surface hydroxylation, the trend of increasing T-g reaches a maximum when the surface is about 75% hydroxylated. Beyond 75% hydroxylation, we see a drop in the T-g. The detailed analysis of the interfacial hydrogen-bonding counts, strengths, and radial distributions sheds light on the underlying factors that induce the drop in the T-g beyond 75% hydroxylation. We found that the competition between inter-PVA-silanol and intra-silanol-silanol interactions is the key factor that contributes to the drop in T-g. Our results allude to the fact that the count and strengths of the different kinds of hydrogen bonds in a polymer-nanocomposite system can be modulated to enable the optimization of the T-g change desired for specific applications.
机译:聚合物 - 纳米颗粒复合体系的玻璃化转变温度(T-G)强烈依赖于聚合物的局部分段动力学。这些动态又取决于纳米颗粒和聚合物之间存在的界面相互作用的类型。在这项工作中,我们通过对聚(乙烯醇)(PVA)-Silica纳米复合材料的全原子模型进行分子动力学模拟来研究T-g相对于聚合物 - 纳米颗粒相互作用的大小。我们的分段动力学分析和平均力计算的潜力表明,羟基二氧化硅表面和聚(乙烯醇)(PVA)之间的强结合相互作用能够促进复合体系的TG相对于散装的增加PVA聚合物系统。虽然我们预期通过增加表面羟基产生的氢键增加的氢键的T-G增加,但是当表面约75%羟基化时,增加T-G的趋势达到最大值。超过75%的羟基化,我们看到T-g下降。对界面氢键计数,强度和径向分布的详细分析揭示了诱导T-G液体超过75%羟基化的下降的潜在因子。我们发现,PVA间硅烷醇和硅烷醇内硅烷醇相互作用之间的竞争是有助于T-G下降的关键因素。我们的结果暗示了聚合物 - 纳米复合材料系统中不同种类的氢键的计数和强度可以调节,以便能够优化特定应用所需的T-G变化。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号