首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component
【24h】

Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component

机译:对食指机械扰动的长期响应具有脊柱成分

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. Spinal cord (SC) contributions to the slower components are rarely considered. To address this, we recorded neural activity in M1 and the cervical SC during a visuomotor tracking task, in which 2 female macaque monkeys moved their index finger against a resisting motor to track an on-screen target. Following the behavioral trial, an increase in motor torque rapidly returned the finger to its starting position (lever velocity.200 degrees/s). Many cells responded to this passive mechanical perturbation (M1: 148 of 211 cells, 70%; SC: 67 of 119 cells, 56%). The neural onset latency was faster for SC compared with M1 cells (21.7 +/- 11.2 ms vs 25.5 +/- 10.7 ms, respectively, mean +/- SD). Using spike-triggered averaging, some cells in both regions were identified as likely premotor cells, with monosynaptic connections to motoneurons. Response latencies for these cells were compatible with a contribution to the muscle responses following the perturbation. Comparable fractions of responding neurons in both areas were active up to 100 ms after the perturbation, suggesting that both SC circuits and supraspinal centers could contribute to later response components.
机译:在一个不确定的外部环境中,电机系统可能需要迅速响应意外的刺激。肢体位移导致肌肉伸展;纠正响应具有多种活动突发,这建议源自神经内的不同部分。最早的反应是如此之快,它只能由脊柱电路产生;随后是较慢的组件,旨在由初级电机皮质(M1)和其他脊柱区域产生。很少考虑对较慢组件的脊髓(SC)贡献。为了解决这个问题,我们在载体跟踪任务期间记录了M1和宫颈SC的神经活动,其中2个母短尾猴猴子将其食指移动到抗蚀电动机上以跟踪屏幕上的屏幕目标。在行为试验之后,电动机扭矩的增加将手指迅速返回到其起始位置(杠杆速度.200度/ s)。许多细胞响应于这种被动机械扰动(M1:148的211个细胞,70%; SC:67个细胞,56%)。对于M1细胞(21.7 +/- 11.2ms分别为25.5 +/- 10.7ms,均为平均值+/- SD),神经发作潜伏期更快。使用尖刺触发的平均,两种区域中的一些细胞被鉴定为热调节细胞,与运动神经元的单腹部连接。这些细胞的响应延迟与对扰动后肌肉反应的贡献相容。在扰动后,两个地区的响应神经元的相当级分在扰动后高达100毫秒,这表明SC电路和求智中心都可以有助于以后的反应组分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号