首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Anti-glucocorticoid gene therapy reverses the impairing effects of elevated corticosterone on spatial memory, hippocampal neuronal excitability, and synaptic plasticity.
【24h】

Anti-glucocorticoid gene therapy reverses the impairing effects of elevated corticosterone on spatial memory, hippocampal neuronal excitability, and synaptic plasticity.

机译:抗糖皮质激素基因治疗逆转了皮质酮对空间记忆,海马神经元兴奋性和突触塑性的损害作用。

获取原文
获取原文并翻译 | 示例
       

摘要

Moderate release of the major stress hormones, glucocorticoids (GCs), improves hippocampal function and memory. In contrast, excessive or prolonged elevations produce impairments. Enzymatic degradation and reformation of GCs help to maintain optimal levels within target tissues, including the brain. We hypothesized that expressing a GC-degrading enzyme in hippocampal neurons would attenuate the negative impact of an excessive elevation in GC levels on synaptic physiology and spatial memory. We tested this by expressing 11-beta-hydroxysteroid dehydrogenase (type II) in dentate gyrus granule cells during a 3 d GC treatment followed by examination of synaptic responses in hippocampal slices or spatial performance in the Morris water maze. In adrenalectomized rats with basal GC replacement, additional GC treatments for 3 d reduced synaptic strength and promoted the expression of long-term depression at medial perforant path synapses, increased granule cell and CA1 pyramidal cell excitability, and impaired spatial reference memory (without influencing learning). Expression of 11-beta-hydroxysteroid dehydrogenase (type II), mostly in mature dentate gyrus granule cells, reversed the effects of high GC levels on granule cell and pyramidal cell excitability, perforant path synaptic plasticity, and spatial memory. These data demonstrate the ability of neuroprotective gene expression limited to a specific cell population to both locally and trans-synaptically offset neurophysiological disruptions produced by prolonged increases in circulating stress hormones. This report supplies the first physiological explanation for previously demonstrated cognitive sparing by anti-stress gene therapy approaches and lends additional insight into the hippocampal processes that are important for memory.
机译:适度释放主要压力激素,糖皮质激素(GCS),改善海马功能和记忆。相比之下,过度或长时间的海拔产生损伤。酶促降解和GCS的重整有助于在包括脑中的靶组织内保持最佳水平。我们假设表达在海马神经元中的GC降解酶将衰减过度升高对突触生理和空间记忆的过度升高的负面影响。通过在3D GC处理期间表达在牙齿过滤颗粒细胞中表达11β-羟基甾醇脱氢酶(II型),然后在莫里斯水迷宫中检查海马切片或空间性能的突触反应检查。在肾上腺切除大鼠具有基础GC替代品的肾上腺切除大鼠中,额外的GC治疗突触强度降低,促进了内侧穿孔路径突触,增加的颗粒细胞和Ca1锥体细胞兴奋性和受损的空间参考记忆中的长期抑郁的表达(不影响学习)。 11-β-羟类脱氢酶(II型)的表达,大多是成熟的牙齿颗粒细胞,逆转了高GC水平对颗粒细胞和金字塔细胞兴奋性,穿孔路径突触塑性和空间记忆的影响。这些数据证明了神经保护基因表达限于局部和反式突触偏移的特定细胞群的能力通过长时间增加循环应激激素产生的循环胁迫激素产生的局部和反式突触偏移的神经生理学中断。本报告提供了先前证明通过抗应激基因治疗方法的认知备件的第一个生理解释,并借助额外了解对记忆很重要的海马流程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号