首页> 外文期刊>Optik: Zeitschrift fur Licht- und Elektronenoptik: = Journal for Light-and Electronoptic >Zn doping in the In0.53Ga0.47As(100)beta(2)(2 x 4) surface for negative electron affinity photocathode: A first-principles research
【24h】

Zn doping in the In0.53Ga0.47As(100)beta(2)(2 x 4) surface for negative electron affinity photocathode: A first-principles research

机译:Zn掺杂在In0.53Ga0.47as(100)β(2)(2×4)表面上,用于负电子亲和光电阴极:一项原则研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

InGaAs is an important ternary III-V semiconductor material with good spectral response in the near infrared region of 1-3 mu m. The negative electron affinity is generated from the proper sensitization of In0.53Ga0.47As(100)beta 2(2 x 4) surface. Doping and sensitization are indispensable in the preparation of InGaAs photocathode. However, the surface doping mechanism of InGaAs is not clear. This article focuses on the suitable doping sites of substitutional Zn atoms for sensitization on In0.53Ga0.47As(100)beta 2(2 x 4) surface. Considering the symmetry, there are eight doping sites and the eight doping surface models are formed. The surface atomic structures and surface formation energies of these models are discussed. The lower the formation energy is, the more stable the surface is. Zn4 and Zn5 are the more stable doping models based on the analysis of formation energy. Therefore the band structure, surface charge distribution, work function and optical properties are further discussed for these two doping models. The Zn4 doping surface has a lower work function and reflectivity and better absorption in the range of 1-3 mu m than Zn5. In a word, the InGaAs surface with Zn4 doped is more conducive to the photoelectrons transport and photoemission. Then Zn4 is the most favorable doping site for the InGaAs photocathode. (C) 2017 Elsevier GmbH. All rights reserved.
机译:Ingaas是一种重要的三元III-V半导体材料,具有近红外区域的良好光谱响应,1-3μm。从In0.53Ga0.47as(100)β2(2×4)表面的适当敏化产生负电子亲和力。掺杂和敏化是在制备InGaAs光电阴极的过程中是必不可少的。然而,InGaAs的表面掺杂机制尚不清楚。本文侧重于敏化Zn原子的合适掺杂位点,用于致敏In0.53Ga0.47as(100)β2(2×4)表面。考虑到对称性,形成八个掺杂位点,形成八个掺杂表面模型。讨论了这些模型的表面原子结构和表面形成能量。形成能量越低,表面越稳定。 Zn4和Zn5是基于形成能量分析的较稳定的掺杂模型。因此,对于这两个掺杂模型,进一步讨论了带结构,表面电荷分布,功函数和光学性质。 Zn4掺杂表面具有较低的功函数和反射率,并且在1-3μm的范围内比Zn5更好地吸收。总之,具有Zn4掺杂的InGaAs表面更有利于光电子传输和光曝光。然后Zn4是Ingaas光电阴极最有利的掺杂网站。 (c)2017年Elsevier GmbH。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号