首页> 外文期刊>Electrochimica Acta >Template-assisted molten-salt synthesis of hierarchical lithium-rich layered oxide nanowires as high-rate and long-cycling cathode materials
【24h】

Template-assisted molten-salt synthesis of hierarchical lithium-rich layered oxide nanowires as high-rate and long-cycling cathode materials

机译:作为高速速率和长循环阴极材料的分层锂富含层状氧化物纳米线的模板辅助熔盐合成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Lithium-rich layered oxides are promising cathode materials for next-generation lithium-ion batteries (LIBs) used in electric vehicles, due to their high specific capacity over 250 mAh g(-1) and high energy density of similar to 900 Wh Kg(-1). However, the poor rate performance and inferior cycling stability of current lithium-rich layered oxides have greatly hindered their practical applications in vehicular LIBs, mostly due to the ineffectiveness of conventional synthesis methods in controlling the materials size and morphology. Herein, one-dimensional (1D) hierarchical lithium-rich layered oxide (Li1.15Mn0.54Co0.08Ni0.23O2) nanowires were successfully synthesized by a template-assisted molten-salt method that used alpha-MnO2 nanotubes as both the manganese source and template. The prepared lithium-rich layer oxide nanowires were similar to 60-80 nm in diameter and similar to 0.5-1 mu m in length, and each nanowire was composed of homogeneous and interconnected primary nanoparticles (5-20 nm). Electrochemical characterization showed that the 1D lithium-rich layered oxide nanowires exhibited impressively high-rate performance, long cycle life, and excellent capacity retention as cathode materials for LIBs. For example, the cathode delivered a high initial discharge capacity of 304.5 mAh g(-1) with a Columbic efficiency of 81.2%, and maintained a discharge capacity of 253.3 mAh g(-1), 241 mAh g(-1), 222 mAh g(-1), and 203 mAh g(-1) after 100 cycles, at 0.5C, 1C, 2C and 5C, respectively. Moreover, at an even high rate of 10C, 20C and 30C, the lithium-rich layered oxide nanowires could still deliver a discharge capacity of 149 mAh g(-1), 121 mAh g(-1), and 65 mAh g(-1) respectively for 1000 cycles, without any capacity decay. Post-cycling structural analysis showed that the 1D nanowire morphology of lithium-rich layered oxide was well preserved after prolonged charge/discharge cycling at 10C for 1000 cycles. The excellent electrochemical performance can be ascribed to the good structural stability of 1D nanowires, primary nanosized particles, high crystallinity of the 1D Li1.15Mn0.54Co0.08Ni0.23O2 nanowires. This work developed a new strategy to synthesize manganese-based cathodes with controlled morphology and high crystallinity by the combination of suitable manganese source and molten salt. (C) 2019 Elsevier Ltd. All rights reserved.
机译:富含锂的层状氧化物是电动车辆中使用的下一代锂离子电池(Libs)的阴极材料,由于它们的高特定容量超过250mAhg(-1),并且高能量密度类似于900 WH kg( -1)。然而,目前锂富含锂层状氧化物的速率性能和较差的循环稳定性极大地阻碍了其在车辆库中的实际应用,主要是由于传统合成方法在控制材料尺寸和形态方面的效果。在此,通过使用α-MnO2纳米管作为锰来源和锰源和α-MnO2纳米管成功合成一维(1D)分层锂的层状氧化物(Li1.15Mn0.54CO0.0.08NI0.23O2)纳米线。模板。将所制备的富锂层氧化物纳米线类似于在直径60-80纳米和类似0.5-1微米的长度,并且每个纳米线的组成均匀并相互连接的纳米颗粒初级(5-20​​纳米)。电化学表征显示,富含锂锂的层状氧化物纳米线令人印象深刻的高速率性能,长循环寿命,以及作为Libs的阴极材料的优异容量保持。例如,阴极用的81.2%一库仑效率递送304.5毫安克(-1)的高的初始放电容量,并保持的253.3毫安g的放电容量(-1),241毫安克(-1),222毫安克(-1),和100次循环后203毫安克(-1),以0.5C,1C,2C分别和5C。此外,在10℃,20℃和30℃的甚至高速率下,富含锂的层状氧化物纳米线仍然可以提供149mAhg(-1),121mAhg(-1)和65mAhg( - 1)分别为1000个循环,无需任何容量衰减。后循环结构分析表明,在10℃下延长充电/放电循环后,富含富锂的层状氧化物的1D纳米线形态良好地保存了1000次循环。优异的电化学性能可以归因于1D纳米线的良好结构稳定性,初级纳米粒子颗粒,1D Li1.15Mn0.54CO0.08NI0.23O2纳米线的初级纳米颗粒,高结晶度。这项工作开发了一种新的策略,以通过合适的锰源和熔盐的组合合成具有受控形态和高结晶度的基于锰的阴极。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号