首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Time Step Reseating Recovers Continuous-Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems
【24h】

Time Step Reseating Recovers Continuous-Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems

机译:时间步长恢复可恢复非平衡系统离散Langevin积分的连续时间动态特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
机译:当使用确定性运动方程式(例如牛顿动力学)来模拟分子系统时,通常根据一组发达的算法来对这些方程式进行数值积分,这些算法具有共同商定的期望特性。但是,对于运动的随机方程(例如,朗格文动力学),对于哪种积分算法最合适仍然存在广泛的分歧。尽管在整个文献中已经提出了多种愿望,但对于哪个标准很重要仍未达成共识,并且没有公开的整合方案能够同时满足所有愿望。使用现有的随机积分方案,结合最近开发的非平衡波动定理,模拟系统失衡导致了其他非同寻常的复杂性。在这里,我们研究了Langevin动力学的离散时间积分方案系列,评估了每个成员如何满足在构建合适的Langevin积分器的先前工作中已经列举的各种需求。我们表明,在位置和速度的确定性更新中并入新的时间步长缩放可以纠正这些积分器中的许多动态缺陷。最后,我们确定了一个特定的分裂(与速度Verlet离散化有关),该分裂具有普遍通用的属性,可用于在平衡,非平衡和路径采样环境中模拟分子系统的Langevin动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号