【24h】

High-flux ceramic membranes with a nanomesh of metal oxide nanofibers

机译:纳米金属氧化物纳米纤维的高通量陶瓷膜

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make do contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances. membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m(2).h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m(2).h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.
机译:通过将金属氢氧化物的胶体悬浮液施加到多孔载体上而制成的传统陶瓷分离膜往往会受到严重影响其质量的针孔和裂纹的影响。这些膜的其他固有问题包括,当减小孔径以提高选择性时通量会急剧损失,并且死孔也会对过滤产生影响。在这项工作中,我们提出了一种通过使用大型钛酸盐纳米纤维和较小的勃姆石纳米纤维在多孔基材上构建分层结构的分离层来解决这些问题的新策略。纳米纤维能够将大的空隙分成较小的空隙,而不会形成死角的孔,并且总空隙体积的减少最小。纳米纤维的分离层的孔隙率超过其体积的70%,而常规陶瓷膜中的分离层的孔隙率低于36%,并且不可避免地包括对通量没有贡献的死角孔。膜质地的这种根本变化大大增强了。膜性能。所得的膜能够在低驱动压力(20 kPa)下从0.01 wt%的乳胶中滤出95.3%的60nm颗粒,同时保持800至1000 L / m(2).h的相对较高的通量。 。这样的流速比具有相同选择性的常规膜的流速大几个数量级。此外,即使经过六次重复的过滤和煅烧,通量也稳定在约800 L / m(2).h,选择性超过95%。使用不同的载体,多孔玻璃或多孔氧化铝,对膜的性能没有实质性影响。因此,有可能在不损害功能的情况下由多种支持物构建膜。达西方程令人满意地描述了过滤通量和新膜的结构参数之间的相关性。将高通量与出色的选择性结合在一起的纳米纤维网孔的组装是膜制造中令人兴奋的新方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号