首页> 外文期刊>Electrochimica Acta >Hydrogel-Derived Nanoporous Sn-In-Ni Ternary Alloy Network for High-Performance Lithium-Storage
【24h】

Hydrogel-Derived Nanoporous Sn-In-Ni Ternary Alloy Network for High-Performance Lithium-Storage

机译:水凝胶衍生的纳米多孔Sn-In-Ni三元合金网络,用于高性能锂存储

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoporous multinary alloy networks containing multiple functional components, i.e. active Li-alloying main-group metals and inactive transition-metals, possess unique structural and compositional features toward lithium storage, and are thus anticipated to manifest desirable anodic performance in advanced lithium-ion batteries (LIBs). Herein, a general and scalable one-pot hydrogel-derived route has been developed for the construction of nanoporous multinary alloy networks via facile coordination-reduction processes using novel cyano-bridged coordination polymer hydrogels (cyanogels) as precursors. The formation of nanoporous Sn-In-Ni ternary alloy network has been illustrated as an example by using a Sn (IV)-In(III)-Ni(II)-Co(III) quaternary metallic cyanogel as a precursor. Meanwhile, nanoporous Sn-Ni binary alloy and metallic In networks have also been synthesized through coordination-reduction routes using Sn(IV)-Ni(II) and In(III)-Co(III) cyanogels as precursors, respectively. Moreover, the anodic performance of the nanoporous Sn-In-Ni ternary alloy network has been examined as a proof-of concept demonstration of its structural and compositional superiorities toward lithium storage. Compared with separate Sn-Ni and In networks, the Sn-In-Ni ternary alloy network manifests markedly enhanced lithium-storage performance in terms of reversible capacities, cycling stability, and so forth, making it an ideal anodic candidate for advanced LIBs with long cycle life and high energy/power densities. Moreover, the proposed hydrogel-derived coordination-reduction strategy would open up new opportunities for constructing nanoporous multinary alloy networks as advanced anodes for LIBs. (C) 2016 Elsevier Ltd. All rights reserved.
机译:包含多种功能成分(即活性锂合金主族金属和惰性过渡金属)的纳米多孔多元合金网络具有独特的结构和组成特征,可存储锂,因此有望在高级锂离子电池中表现出理想的阳极性能( LIB)。在本文中,已经开发了一种通用且可扩展的一锅法水凝胶衍生路线,该路线通过使用新型氰基桥联配位聚合物水凝胶(氰基凝胶)作为前体的简便配位还原过程来构建纳米多孔多元合金网络。以Sn(IV)-In(III)-Ni(II)-Co(III)四元金属氰基凝胶为前体,举例说明了纳米多孔Sn-In-Ni三元合金网络的形成。同时,还分别通过以Sn(IV)-Ni(II)和In(III)-Co(III)氰基银为前体的配位-还原路线合成了纳米多孔Sn-Ni二元合金和金属In网络。此外,已经检查了纳米多孔Sn-In-Ni三元合金网络的阳极性能,作为其在结构和组成方面对锂存储的优越性的概念验证。与单独的Sn-Ni和In网络相比,Sn-In-Ni三元合金网络在可逆容量,循环稳定性等方面均显着增强了锂存储性能,使其成为长寿命高级LIB的理想阳极候选材料循环寿命和高能量/功率密度。此外,拟议的水凝胶衍生的配位减少策略将为构建纳米多孔多元合金网络作为LIB的高级阳极提供新的机会。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号