首页> 外文期刊>Computers & Fluids >A method for merging flow-dependent forecast error statistics from an ensemble with static statistics for use in high resolution variational data assimilation
【24h】

A method for merging flow-dependent forecast error statistics from an ensemble with static statistics for use in high resolution variational data assimilation

机译:一种将集合中与流量相关的预测误差统计信息与静态统计信息合并以用于高分辨率变分数据同化的方法

获取原文
获取原文并翻译 | 示例

摘要

The background error covariance matrix, B, is often used in variational data assimilation for numerical weather prediction as a static and hence poor approximation to the fully dynamic forecast error covariance matrix, Pf. In this paper the concept of an Ensemble Reduced Rank Kalman Filter (EnRRKF) is outlined. In the EnRRKF the forecast error statistics in a subspace defined by an ensemble of states forecast by the dynamic model are found. These statistics are merged in a formal way with the static statistics, which apply in the remainder of the space. The combined statistics may then be used in a variational data assimilation setting. It is hoped that the nonlinear error growth of small-scale weather systems will be accurately captured by the EnRRKF, to produce accurate analyses and ultimately improved forecasts of extreme events.
机译:背景误差协方差矩阵B通常用于数值天气预报的变化数据同化中,因为它是静态的,因此对全动态预报误差协方差矩阵Pf的近似度很低。本文概述了整体降阶卡尔曼滤波器(EnRRKF)的概念。在EnRRKF中,找到由动态模型预测的状态集合定义的子空间中的预测误差统计信息。这些统计信息以正式方式与静态统计信息合并,后者适用于该空间的其余部分。然后可以将组合的统计信息用于变化数据同化设置中。希望EnRRKF能够准确地捕获小规模天气系统的非线性误差增长,以产生准确的分析结果并最终改善极端事件的预报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号