首页> 外文期刊>Journal of Wind Engineering and Industrial Aerodynamics: The Journal of the International Association for Wind Engineering >Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
【24h】

Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms

机译:流经风力涡轮机和风电场的大气边界层大涡模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Accurate prediction of atmospheric boundary layer (ABL) flow and its interactions with wind turbines and wind farms is critical for optimizing the design (turbine siting) of wind energy projects. Large-eddy simulation (LES) can potentially provide the kind of high-resolution spatial and temporal information needed to maximize wind energy production and minimize fatigue loads in wind farms. However, the accuracy of LESs of ABL flow with wind turbines hinges on our ability to parameterize subgrid-scale (SGS) turbulent fluxes as well as turbine-induced forces. This paper focuses on recent research efforts to develop and validate an LES framework for wind energy applications. SGS fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces (e.g., thrust, lift and drag) are parameterized using two types of models: actuator-disk models that distribute the force loading over the rotor disk, and actuator-line models that distribute the forces along lines that follow the position of the blades. Simulation results are compared to wind-tunnel measurements collected with hot-wire anemometry in the wake of a miniature three-blade wind turbine placed in a boundary layer flow. In general, the characteristics of the turbine wakes simulated with the proposed LES framework are in good agreement with the measurements in the far-wake region. Near the turbine, up to about five rotor diameters downwind, the best performance is obtained with turbine models that induce wake-flow rotation and account for the non-uniformity of the turbine-induced forces. Finally, the LES framework is used to simulate atmospheric boundary-layer flow through an operational wind farm.
机译:准确预测大气边界层(ABL)流量及其与风力涡轮机和风电场的相互作用,对于优化风能项目的设计(涡轮选址)至关重要。大涡模拟(LES)可以潜在地提供高分辨率的时空信息,以最大化风能的产生并最小化风电场的疲劳负荷。但是,风力涡轮机的ABL流的LESs的准确性取决于我们能否对次网格规模(SGS)湍流和涡轮机感应力进行参数化。本文重点关注最近的研究工作,以开发和验证用于风能应用的LES框架。 SGS通量使用免调节拉格朗日标度依赖的动力学模型进行参数化。这些模型基于解析尺度的动态性来优化模型系数的局部值。可以使用两种类型的模型对涡轮机感应力(例如,推力,升力和阻力)进行参数化:将力负载分布在转子盘上的执行器-盘模型,以及将力沿着沿直线分布的线分布的执行器-线模型。叶片的位置。在将微型三叶片风力涡轮机置于边界层流中之后,将模拟结果与通过热线风速仪收集的风洞测量结果进行了比较。总的来说,用提出的LES框架模拟的涡轮机尾流的特性与在远尾流区的测量结果非常吻合。在涡轮机附近,顺风向最多可达到约五个转子直径,通过涡轮机模型可获得最佳性能,该模型可引起尾流旋转并解决了涡轮机引起的力的不均匀性。最后,LES框架用于模拟通过运营风电场的大气边界层流动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号