首页> 外文期刊>Journal of Molecular Biology >Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.
【24h】

Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces.

机译:蛋白质G的β-发夹片段的分子动力学模拟:侧链和主链力之间的平衡。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

How is the native structure encoded in the amino acid sequence? For the traditional backbone centric view, the dominant forces are hydrogen bonds (backbone) and phi-psi propensity. The role of hydrophobicity is non-specific. For the side-chain centric view, the dominant force of protein folding is hydrophobicity. In order to understand the balance between backbone and side-chain forces, we have studied the contributions of three components of a beta-hairpin peptide: turn, backbone hydrogen bonding and side-chain interactions, of a 16-residue fragment of protein G. The peptide folds rapidly and cooperatively to a conformation with a defined secondary structure and a packed hydrophobic cluster of aromatic side-chains. Our strategy is to observe the structural stability of the beta-hairpin under systematic perturbations of the turn region, backbone hydrogen bonds and the hydrophobic core formed by the side-chains, respectively. In our molecular dynamics simulations, the peptides are solvated. with explicit water molecules, and an all-atom force field (CFF91) is used. Starting from the original peptide (G41EWTYDDATKTFTVTE56), we carried out the following MD simulations. (1) unfolding at 350 K; (2) forcing the distance between the C(alpha) atoms of ASP47 and LYS50 to be 8 A; (3) deleting two turn residues (Ala48 and Thr49) to form a beta-sheet complex of two short peptides, GEWTYDD and KTFTVTE; (4) four hydrophobic residues (W43, Y45, F52 and T53) are replaced by a glycine residue step-by-step; and (5) most importantly, four amide hydrogen atoms (T44, D46, T53, and T55, which are crucial for backbone hydrogen bonding), are substituted by fluorine atoms. The fluorination not only makes it impossible to form attractive hydrogen bonding between the two beta-hairpin strands, but also introduces a repulsive force between the two strands due to the negative charges on the fluorine and oxygen atoms. Throughout all simulations, we observe that backbone hydrogen bonds are very sensitive to the perturbations and are easily broken. In contrast, the hydrophobic core survives most perturbations. In the decisive test of fluorination, the fluorinated peptide remains folded under our simulation conditions (5 ns, 278 K). Hydrophobic interactions keep the peptide folded, even with a repulsive force between the beta-strands. Thus, our results strongly support a side-chain centric view for protein folding. Copyright 2000 Academic Press.
机译:氨基酸序列中的天然结构如何编码?对于传统的以骨架为中心的视图,主要力量是氢键(主链)和phi-psi倾向。疏水作用是非特异性的。对于侧链中心视图,蛋白质折叠的主要作用是疏水性。为了理解主链和侧链力之间的平衡,我们研究了β-发夹肽的三个成分的贡献:蛋白质G的16个残基片段的转角,主链氢键和侧链相互作用。肽快速且折叠地折叠成具有定义的二级结构和堆积的芳族侧链疏水簇的构象。我们的策略是观察分别在转向区域,主链氢键和侧链形成的疏水核的系统扰动下β-发夹的结构稳定性。在我们的分子动力学模拟中,肽被溶剂化。具有明确的水分子,并使用全原子力场(CFF91)。从原始肽(G41EWTYDDATKTFTVTE56)开始,我们进行了以下MD模拟。 (1)以350 K展开; (2)迫使ASP47的Cα原子与LYS50之间的距离为8A; (3)删除两个转向残基(Ala48和Thr49)以形成两个短肽GEWTYDD和KTFTVTE的β-折叠复合物; (4)将四个疏水残基(W43,Y45,F52和T53)逐步替换为甘氨酸残基; (5)最重要的是,四个酰胺氢原子(对骨架氢键至关重要的T44,D46,T53和T55)被氟原子取代。氟化不仅使得不可能在两个β-发夹链之间形成有吸引力的氢键,而且由于氟和氧原子上的负电荷而在两个链之间引入了排斥力。在所有模拟中,我们观察到主链氢键对扰动非常敏感并且容易断裂。相反,疏水核在大多数扰动下幸存下来。在氟化的决定性测试中,氟化肽在我们的模拟条件(5 ns,278 K)下保持折叠状态。疏水相互作用使肽折叠,即使在β链之间具有排斥力也是如此。因此,我们的结果强烈支持蛋白质折叠的侧链中心观点。版权所有2000学术出版社。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号