首页> 外文期刊>Journal of manufacturing science and engineering: Transactions of the ASME >Modelling, identification and control of thermal deformation of machine tool structures, part 5: experimental verification
【24h】

Modelling, identification and control of thermal deformation of machine tool structures, part 5: experimental verification

机译:机床结构热变形的建模,识别和控制,第5部分:实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

Machining accuracy is more often governed by thermal deformation of the machine structure than by static stiffness and dynamic rigidity. Since thermally-induced en cannot completely be eliminated at the design stage, the use of control andcompensation systems is an inevitable course of action. Existing control systems are based on different approaches; the use of empirical compensation function, and on-line execution of numerical simulation models. To overcome the limitations of thesemethods, a new control system has recently been proposed by the authors. This system, which is based the concept of generalized modelling, incorporates a realtime inverse heat conduction problem IHCP solver to estimate the transient thermal load appliedto the structure. V this information, the relative thermal deformation between the tool and the workpiece estimated and used as a feedback control signal. In previous parts of this series, computer simulation test cases were carried out to examine thedynamic response, accuracy stability of the system.In the present study, the performance of various components of the control system specifically, the IHCP solver, the thermal deformation estimator, and the feedback controller are verified experimentally using a three-component structure. The resultsshowed that the derived generalized thermoelastic transfer functions and algorithms indeed quite accurate in predicting and controlling the transient thermoelastic response behaviour of a predominantly linear structure. The results showed that the IHCP so is inherently stable even when the temperature measurements are contaminated with random errors. The excellent computational efficiency of the integrated system is shown to be well suited for real-time control applications involving multi-dimensionalstructures, achieving a control cycle of less than 0.5 second. The experimental results showed that in real structures higher modes can be present, and therefore, a fourth order deformation model should be used to improve the prediction accuracy. Theproposed PID con system, with feedforward branches, was capable of reducing thermal deformations of order of 200μm to levels below ±8μm. These results also demonstrated the effectiveness of artificial heat sources as a control actuation mechanism, inspite of their inherent limitations, namely, thermal inertia, coupledness, and unidirectionality.
机译:加工精度通常是由机器结构的热变形决定的,而不是由静态刚度和动态刚度决定的。由于在设计阶段无法完全消除热感应的影响,因此使用控制和补偿系统是不可避免的行动。现有的控制系统基于不同的方法。使用经验补偿函数,以及在线执行数值模拟模型。为了克服这些方法的局限性,作者最近提出了一种新的控制系统。该系统基于广义建模的概念,并结合了实时逆导热问题IHCP求解器,以估算施加到结构上的瞬态热负荷。 V该信息估算出刀具与工件之间的相对热变形,并用作反馈控制信号。在本系列的前几部分中,进行了计算机模拟测试用例,以检查系统的动力响应,精度稳定性。在本研究中,控制系统各个组件的性能,特别是IHCP求解器,热变形估算器,采用三元结构对反馈控制器进行了实验验证。结果表明,导出的广义热弹性传递函数和算法在预测和控制主要为线性结构的瞬态热弹性响应行为方面确实非常准确。结果表明,即使温度测量受到随机误差的污染,IHCP也具有固有的稳定性。集成系统的出色计算效率被证明非常适合涉及多维结构的实时控制应用,实现了不到0.5秒的控制周期。实验结果表明,在实际结构中可以存在更高的模态,因此,应使用四阶变形模型来提高预测精度。所提出的具有前馈分支的PID con系统能够将200μm量级的热变形减小到±8μm以下。这些结果也证明了人工热源作为控制致动机制的有效性,尽管存在固有的局限性,即热惯性,耦合性和单向性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号