首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Interpretation of resonance frequencies recorded during hydraulic fracturing treatments
【24h】

Interpretation of resonance frequencies recorded during hydraulic fracturing treatments

机译:解释水力压裂处理期间记录的共振频率

获取原文
获取原文并翻译 | 示例
       

摘要

Hydraulic fracturing treatments are often monitored by strings of geophones deployed in boreholes. Instead of picking discrete events only, we here use time-frequency representations of continuous recordings to identify resonances in two case studies. This paper outlines an interpretational procedure to identify their cause using a subdivision into source, path, and receiver-side effects. For the first case study, two main resonances are observed both at depth by the downhole geophones and on the surface by two broadband arrays. The two acquisition networks have different receiver and path effects, yet recorded the same resonances; these resonances are therefore likely generated by source effects. The amplitude pattern at the surface arrays indicates that these resonances are probably due to pumping operations. In the second case study, selective resonances are detected by the downhole geophones. Resonances coming from receiver effects are either lower or higher frequency, and wave propagation modeling shows that path effects are not significant. We identify two possible causes within the source area, namely, eigenvibrations of fractures or non-Darcian flow within the hydraulic fractures. In the first situation, 15–30 m long fluid-filled cracks could generate the observed resonances. An interconnected fracture network would then be required, corresponding to mesoscale deformation of the reservoir. Alternatively, systematic patterns in non-Darcian fluid flow within the hydraulic fracture could also be their leading cause. Resonances can be used to gain a better understanding of reservoir deformations or dynamic fluid flow perturbations during fluid injection into hydrocarbon and geothermal reservoirs, CO_2 sequestration, or volcanic eruptions.
机译:水力压裂处理通常由部署在井眼中的地震检波器监控。在两个案例研究中,我们不仅仅选择离散事件,还使用连续记录的时频表示来识别共振。本文概述了一种解释程序,该程序使用源,路径和接收方副作用的细分来确定其原因。对于第一个案例研究,井下地震检波器在深度处观察到两个主要共振,在地面上通过两个宽带阵列观察到两个主要共振。这两个采集网络具有不同的接收器和路径效应,但记录了相同的共振。因此,这些共振很可能是由源效应产生的。表面阵列处的振幅模式表明这些共振可能是由于泵浦操作引起的。在第二个案例研究中,井下地震检波器检测到选择性共振。接收器效应产生的共振频率更低或更高,并且波传播建模表明路径效应并不显着。我们确定了震源区内的两个可能原因,即裂缝的本征振动或水力裂缝内的非达西渗流。在第一种情况下,15-30 m长的充满流体的裂缝可能产生观察到的共振。然后将需要一个互连的裂缝网络,这对应于储层的中尺度变形。或者,水力压裂内非达拉斯流体流动的系统模式也可能是其主要原因。在将流体注入碳氢化合物和地热储层,CO_2封存或火山喷发过程中,可以使用共振来更好地理解储层变形或动态流体流动扰动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号