首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Constraints on fluid flow processes in the Hellenic Accretionary Complex (eastern Mediterranean Sea) from numericalmodeling
【24h】

Constraints on fluid flow processes in the Hellenic Accretionary Complex (eastern Mediterranean Sea) from numericalmodeling

机译:通过数值模拟对希腊增生复合体(地中海东部)中流体流动过程的约束

获取原文
获取原文并翻译 | 示例
       

摘要

The dynamics of accretionary convergent margins are severely influenced by intense deformation and fluid expulsion. To quantify the fluid pressure and fluid flow velocities in the Hellenic subduction system, we set up 2-D hydrogeological numerical models following two seismic reflection lines across the Mediterranean Ridge. These profiles bracket the along-strike variation in wedge geometry: moderate compression and a >4 km thick underthrust sequence in the west versus enhanced compression and <1 km of downgoing sediment in the center. Input parameters were obtained from preexisting geophysical data, drill cores, and new geotechnical laboratory experiments. A permeability-porosity relationship was determined by a sensitivity analysis, indicating that porosity and intrinsic permeability are small. This hampers the expulsion of fluids and leads to the build up of fluid overpressure in the deeper portion of the wedge and in the underthrust sediment. The loci of maximum fluid pressure are mainly controlled by the compactional fluid source, which generally decreases toward the backstop. However, pore pressure is still high at the decollement level at distances <100 km from the deformation front, either by the incorporation of low permeability evaporites or additional compaction of the wedge sediments in the two profiles. In the west, however, formation of a wide accretionary complex is facilitated by high pore pressure zones. When compared to other large accretionary complexes such as Nankai or Barbados, our results not only show broad similarities but also that near-lithostatic pore pressures may be easier to maintain in the Hellenic Arc because of accentuated collision, some underthrust evaporates, and a thicker underthrust sequence.
机译:增生收敛边缘的动力学受到强烈变形和流体驱逐的严重影响。为了量化希腊俯冲系统中的流体压力和流体流速,我们沿着横跨地中海脊的两条地震反射线建立了二维水文地质数值模型。这些剖面反映了楔形几何结构的走向走向变化:西部受适度压缩和厚度大于4 km的下冲断层,而中央受压缩作用和下沉的沉积物不到1 km。输入参数是从预先存在的地球物理数据,钻芯和新的岩土实验室实验中获得的。通过敏感性分析确定了渗透率与孔隙率的关系,表明孔隙率和固有渗透率很小。这阻碍了流体的排出,并导致在楔形物的较深部分和底推沉积物中形成了流体超压。最大流体压力的轨迹主要由压缩流体源控制,该流体源通常向逆止器减小。然而,由于在两个剖面剖面中结合了低渗透率的蒸发物或楔形沉积物的进一步压实,在距变形锋面<100 km的距离上,孔隙度仍处于较高的折斜水平。然而,在西部,高孔隙压力区促进了宽增生复合物的形成。与其他大型增生复合物(例如Nankai或Barbados)相比,我们的结果不仅显示出广泛的相似性,而且由于加剧的碰撞,一些下冲蒸发和更厚的下冲,古希腊弧中的近静态孔隙压力可能更容易保持。顺序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号