首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Compaction creep of sands due to time-dependent grain failure: Effects of chemical environment, applied stress, and grain size
【24h】

Compaction creep of sands due to time-dependent grain failure: Effects of chemical environment, applied stress, and grain size

机译:随时间变化的晶粒破坏导致的压实蠕变:化学环境,施加应力和晶粒尺寸的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Time-dependent brittle creep plays a role in controlling compaction of sands and sandstones under upper crustal conditions, influencing phenomena such as production-induced reservoir compaction, surface subsidence, and induced seismicity. Brittle creep also plays a role in determining the mechanical behavior of gouge-rich faults. We performed uniaxial creep experiments on sand to investigate the effects of chemical environment (dry versus solution flooded), grain size (d=196–378 μm), and applied effective stress (σ_a up to 30MPa), at room temperature conditions favoring grain-scale brittle processes. Creep measurements were complemented with acoustic emission (AE) detection and microstructural analysis to characterize the main creep mechanism. Wet samples showed much higher creep strains than dry-tested samples. AE event counts showed a direct relation between grain failure and creep strain, with higher AE rates occurring in thewet samples. Therefore, we inferred that time-dependent deformation was dominated by subcritical crack growth, resulting in grain failure accompanied by intergranular sliding rearrangements, and that crack growth in the presence of chemically active fluids was controlled by stress corrosion. The sensitivity of the compaction rate of the sands to d and σ_a can be expressed as ε ∝ d~iσ ~j_a where i ≈6 and j ≈ 21 under dry conditions and i ≈9 and j ≈ 15 under wet conditions. Our results were compared to a simple model based on Hertzian contact theory, linear elastic fracture mechanics, and subcritical crack growth. This model showed agreement between the observed stress and grain size sensitivities of creep, within a factor of 2.
机译:随时间变化的脆性蠕变在控制上地壳条件下的砂土和砂岩的压实中起着作用,影响诸如生产引起的储层压实,地表沉陷和诱发地震等现象。脆性蠕变在确定富含气刨的断层的力学行为中也起作用。我们在沙子上进行了单轴蠕变实验,研究了在室温条件下有利于晶粒细化的化学环境(干对固溶与溶液淹没),晶粒尺寸(d = 196–378μm)和施加的有效应力(σ_a最高30MPa)的影响。规模脆弱的过程。蠕变测量与声发射(AE)检测和微结构分析相辅相成,以表征主要蠕变机理。湿样品显示的蠕变应变比干测试样品高。 AE事件计数显示晶粒破坏与蠕变应变之间存在直接关系,在潮湿样品中发生的AE率更高。因此,我们推断出时间依赖性变形主要由亚临界裂纹扩展所致,从而导致晶粒破坏并伴随着晶间滑动重排,并且在化学活性流体存在下裂纹扩展受应力腐蚀控制。沙的压实率对d和σ_a的敏感性可以表示为εd〜iσ〜j_a,其中在干燥条件下i≈6和j≈21,在潮湿条件下i≈9和j≈15。我们的结果与基于赫兹接触理论,线性弹性断裂力学和亚临界裂纹扩展的简单模型进行了比较。该模型显示观察到的应力与蠕变晶粒度敏感性之间的一致性,为2的因数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号