首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Numerical simulations of granular shear zones using the distinct element method 1. Shear zone kinematics and the micromechanics of localization
【24h】

Numerical simulations of granular shear zones using the distinct element method 1. Shear zone kinematics and the micromechanics of localization

机译:离散单元法对颗粒剪切带的数值模拟1.剪切带运动学和定位的微观力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Two-dimensional numerical simulations were conducted using the distinct element methods (DEM) to examine the influences of particle size distribution (PSD) and interparticle friction #mu#_p on the nature of deformation in granular fault gouge. Particle fracture was not allowed in this implementation but points in PSD space were examined by constructing assemblages of particles with self-similar size distributions defined by the two-dimensional power law exponent D. For these numerical "experiments," D ranged from 0.81 to 2.60, where D = 1.60 represents the two-dimensional equivalent of a characteristic PSD to which cataclastically deforming gouge is thought to evolve. Experiments presented here used #mu#_p values of 0.10 and 0.50 and were conducted using normal stress #sigma#_n on the shear zone walls of 70 Mpa. Shear strain within these simulated assemblages was accommodated by intermittent displacement along discrete slip surfaces, alternating between broadly distributed deformation along multiple slip planes and highly localized deformation along a single, sharply defined, subhorizontal zone of slip. Slip planes corresponded in orientation and sense of shear to shear structures observed in natural gouge zones, specifically Riedel and Y shears; the oblique Riedel shears showed more extreme orientations than typical, but their geometries were consistent with those predicted for low-strength Coulomb materials. The character of deformation in the shear zone varied with PSD due to changes in the relative importance of interparticle slip and rolling as deformation mechanisms. A high degree of frictional coupling between large rolling particles in low D (coarse-grained) assemblages resulted in wide zones of slip and broadly distributed deformation. In higher D assemblages (D >= 1.60), small rolling particles self-organized into columns that separated large rolling particles, causing a reduction in frictional resistance within the deforming assemblage. This unusual particle configuration appears to depend on a critical abundance of small particles achieved at D approx= 1.60 and may enable strain localization in both real and simulated granular assemblages.
机译:使用离散元方法(DEM)进行了二维数值模拟,以考察粒度分布(PSD)和颗粒间摩擦力#mu#_p对颗粒断层泥中变形性质的影响。此实现中不允许出现粒子破裂,但通过构建具有二维幂律指数D定义的自相似大小分布的粒子集合,来检查PSD空间中的点。对于这些数值“实验”,D的范围为0.81至2.60 ,其中D = 1.60表示特征性PSD的二维等效值,认为其分解弹塑性变形会产生。此处介绍的实验使用的#mu#_p值为0.10和0.50,并且是在70 Mpa的剪切带壁上使用正应力#sigma#_n进行的。这些模拟组合中的剪切应变是通过沿离散滑移面的间歇位移,沿多个滑移面的宽分布变形与沿单个,清晰界定的滑移水平区域的高度局部变形之间的交替来适应的。滑移面在剪切方向和剪切方向上对应于在自然凿区中观察到的剪切结构,特别是Riedel和Y剪切。倾斜的Riedel剪切机显示出比典型剪切方向更大的极限方向,但其几何形状与低强度库仑材料所预测的一致。由于颗粒间滑动和滚动作为变形机制的相对重要性的变化,剪切区的变形特性随PSD而变化。低D(粗颗粒)组件中大滚动颗粒之间的高度摩擦耦合导致了较大的滑动区域和广泛分布的变形。在较高的D组合(D> = 1.60)中,小的滚动粒​​子自组织为将大的滚动粒子分离的圆柱,从而导致变形组合内的摩擦阻力减小。这种不寻常的颗粒构型似乎取决于在D大约= 1.60时获得的临界小颗粒丰度,并且可能使应变在真实和模拟的颗粒组合中定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号