首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Segmentation in gravity and magnetic anomalies along the US East Coast passive margin: Implications for incipient structure of the oceanic lithosphere
【24h】

Segmentation in gravity and magnetic anomalies along the US East Coast passive margin: Implications for incipient structure of the oceanic lithosphere

机译:沿美国东海岸被动边缘的重力和磁异常分段:对海洋岩石圈初始结构的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Segmentation is a characteristic feature of seafloor spreading along the global midocean ridge system. While segmentation of active spreading centers has been the focus of much recent research, the process by which a rifted continental margin develops into a segmented midocean ridge is still poorly understood. In this study we investigate the segmentation character of the U.S. East Coast margin through a modeling study of the margin basement structure, magnetics, and gravity anomalies. The East Coast margin is of particular interest because it is one of several rifted continental margins that display thick sequences of high seismic velocity igneous crust, presumably formed during rifting. The East Coast Magnetic Anomaly (ECMA), a distinct total field magnetic high running offshore along the margin, is commonly located seaward of the thickest sections of the high-velocity crust and displays segmentation on Length scales (100-120 km) similar to the segmentation observed at the Mid-Atlantic Ridge(MAR). Isostatic gravity anomalies were calculated by removing from free-air gravity the predicted effects of seafloor, sediments, and a crust-mantle model assuming local isostatic compensation. The resultant residuals show a corridor of high anomaly running along the margin, situated close to the maximum thickness of the high seismic velocity crust as determined from the two available seismic refraction lines. Reduction to the pole (R-T-P) of the total field magnetic anomaly shows that after the removal of skewness from the ECMA, the location of the isostatic gravity high is closely correlated to the ECMA. The isostatic gravity high is also segmented but in two distinct wave bands: 100-150 km and 300-500 km. The short-wavelength (100-150 km) segmentation in the R-T-P magnetic and isostatic gravity anomalies is similar in wavelength to segmentation in magnetization and mantle Bouguer anomaly observed along the present-day MAR. The 300-500 km segmentation in the along-margin isostatic gravity anomaly is similar in length scale to both intermediate-wavelength tectonic segmentation observed in the South Atlantic and variations in lithospheric strength observed along the African margin. Furthermore, two of the intermediate-wavelength (300-500 km) isostatic gravity lows correspond to the early traces of the Kane and Atlantis fracture zones, suggesting that these two fracture zones may define boundaries of a single tectonic corridor in the North Atlantic. We hypothesize that the direct cause of the intermediate-wavelength segmentation may be along-margin variations in both the amount of underplated igneous crust and the strength of the lithosphere, although the relative importance of these two effects remains unresolved. Our results imply that segmentation is an important feature of margin development and that segmentation at mature oceanic spreading centers may be directly linked to segmentation during continental rifting. [References: 66]
机译:分割是海底沿全球中洋海脊系统扩散的特征。尽管主动扩散中心的分割一直是最近研究的重点,但对裂谷大陆边缘发展成分割的洋中脊的过程仍知之甚少。在这项研究中,我们通过对边缘基底结构,磁学和重力异常的建模研究来研究美国东海岸边缘的分割特征。东海岸边缘特别受关注,因为它是几个裂谷的大陆边缘之一,显示了高地震速火成硬壳的厚层序列,大概是在裂谷过程中形成的。东海岸磁异常(ECMA)是沿边缘向海上延伸的独特的总磁场磁高,通常位于高速地壳最厚部分的向海处,并在长度尺度(100-120 km)上显示类似于在大西洋中脊(MAR)观察到的分割。通过从自由重力中除去假定局部等静压补偿的海底,沉积物和地幔模型,可以计算出等静重力异常。由此产生的残差显示出一条沿边缘延伸的异常高的走廊,其位置接近高地震速度地壳的最大厚度,该厚度由两条可用的地震折射线确定。对整个磁场异常的极点(R-T-P)的减少表明,从ECMA消除偏斜之后,等静重力高的位置与ECMA紧密相关。也将等静重力高分段,但分为两个不同的波段:100-150 km和300-500 km。 R-T-P磁和等静重力异常中的短波(100-150 km)分段在波长上类似于沿今天的MAR观测到的磁化和地幔布格异常分段。沿边界等静重力异常的300-500 km分段在长度尺度上与南大西洋观测到的中波构造分段和沿非洲边界观测到的岩石圈强度变化相似。此外,两个中等波长(300-500 km)的等静重力低点对应于凯恩(Kane)和亚特兰蒂斯(Atlantis)断裂带的早期迹线,表明这两个断裂带可能会界定北大西洋单个构造走廊的边界。我们假设中间波长分段的直接原因可能是底盘火成壳的数量和岩石圈强度的沿边际变化,尽管这两种影响的相对重要性仍未解决。我们的结果表明,分割是边缘发育的重要特征,成熟的大洋扩散中心的分割可能与大陆裂谷期间的分割直接相关。 [参考:66]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号