...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies
【24h】

The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2,3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies

机译:量子力学/分子力学研究表明,色氨酸双加氧酶和吲哚胺2,3-双加氧酶进行的双加氧反应的第一步

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are two heme-containing enzymes which catalyze the conversion of L-tryptophan to N-formylkynurenine (NFK). In mammals, TDO is mostly expressed in liver and is involved in controlling homeostatic serum tryptophan concentrations, whereas IDO is ubiquitous and is involved in modulating immune responses. Previous studies suggested that the first step of the dioxygenase reaction involves the deprotonation of the indoleamine group of the substrate by an evolutionarily conserved distal histidine residue in TDO and the hemebound dioxygen in IDO. Here, we used classical molecular dynamics and hybrid quantum mechanical/molecular mechanical methods to evaluate the base-catalyzed mechanism. Our data suggest that the deprotonation of the indoleamine group of the substrate by either histidine in TDO or heme-bound dioxygen in IDO is not energetically favorable. Instead, the dioxygenase reaction can be initiated by a direct attack of heme-bound dioxygen on the C _2=C _3 bond of the indole ring, leading to a protein-stabilized 2,3-alkylperoxide transition state and a ferryl epoxide intermediate, which subsequently recombine to generate NFK. The novel sequential two-step oxygen addition mechanism is fully supported by our recent resonance Raman data that allowed identification of the ferryl intermediate (Lewis-Ballester et al. in Proc Natl Acad Sci USA 106:17371-17376, 2009). The results reveal the subtle differences between the TDO and IDO reactions and highlight the importance of protein matrix in modulating stereoelectronic factors for oxygen activation and the stabilization of both transition and intermediate states.
机译:色氨酸双加氧酶(TDO)和吲哚胺2,3-双加氧酶(IDO)是两种含血红素的酶,可催化L-色氨酸转化为N-甲酰基犬尿氨酸(NFK)。在哺乳动物中,TDO主要在肝脏中表达,并参与控制稳态血清色氨酸的浓度,而IDO无处不在,并参与调节免疫反应。先前的研究表明,双加氧酶反应的第一步涉及通过在TDO中进化上保守的远端组氨酸残基和在IDO中血红素结合的双氧酶使底物的吲哚胺基去质子化。在这里,我们使用经典的分子动力学和混合量子力学/分子力学方法来评估碱催化的机理。我们的数据表明,底物中吲哚胺基团被TDO中的组氨酸或IDO中的血红素结合的双氧去质子化在能量上不利。相反,可以通过血红素结合的双氧直接攻击吲哚环的C _2 = C _3键来引发双加氧酶反应,从而导致蛋白质稳定的2,3-烷基过氧化物过渡态和环戊基环氧中间体随后重组产生NFK。我们最近的共振拉曼数据完全支持了新颖的连续两步式氧气添加机制,该数据允许鉴定小轮中间体(Lewis-Ballester等人,Proc Natl Acad Sci USA 106:17371-17376,2009)。结果揭示了TDO和IDO反应之间的细微差异,并突出了蛋白质基质在调节立体电子因子中对氧活化以及过渡态和中间态稳定的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号