...
首页> 外文期刊>Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear >A study on dynamic stress intensity factors of rail cracks at high speeds by a 3D explicit finite element model of rolling contact
【24h】

A study on dynamic stress intensity factors of rail cracks at high speeds by a 3D explicit finite element model of rolling contact

机译:利用滚动接触的3D显式有限元模型研究高速铁路裂纹的动态应力强度因子

获取原文
获取原文并翻译 | 示例

摘要

A 3D explicit finite element model has been developed with ANSYS/Ls-dyna to study the dynamic interaction between a wheelset and a cracked rail at high speeds. Two contact pairs are separately defined in the wheel-rail interface and between the crack faces, for which Coulomb's law of friction is implemented. By incorporating a self-developed program, the dynamic stress intensity factors (SIFs) at the crack tip are calculated from the dynamic solutions using the virtual crack closure technique. As the first step, this work investigates the vertical rail crack being perpendicular to the contact surface. Significant difference between the dynamic and the static contact solutions illustrates that the cracking behavior is essentially a dynamic phenomenon, and the moving Hertzian loading usually assumed in the literature is not strictly valid. It is further found that the vertical cracks are completely closed during the wheel passage, resulting in the absence of SIF K-1 along the crack tip, and larger K-ll with respect to Km. A parameter variation analysis confirms that the traction effort and the lubrication on crack faces can significantly enhance the potential of crack propagation, while the rolling speed is found to have negligible influence under the assumption of linear elastic material. Considering the minimum fracture toughness of 26 MPa m(1/2) of a rail material (U71MnG), a vertical crack can hardly propagate into the bulk, being in line with field observations that RCF cracks usually propagate at shallow angles to the contact surface. (C) 2016 Elsevier B.V. All rights reserved.
机译:利用ANSYS / Ls-dyna开发了3D显式有限元模型,以研究轮对和裂轨在高速下的动态相互作用。在轮轨接口中和裂纹面之间分别定义了两个接触对,为此实现了库仑摩擦定律。通过合并一个自行开发的程序,使用虚拟裂纹闭合技术从动态解中计算出裂纹尖端处的动态应力强度因子(SIF)。第一步,这项工作研究垂直于接触表面的垂直导轨裂纹。动态和静态接触解决方案之间的显着差异表明,开裂行为本质上是一种动态现象,并且文献中通常假设的移动赫兹载荷并非严格有效。进一步发现,垂直裂纹在车轮通过过程中被完全封闭,导致沿裂纹尖端不存在SIF K-1,并且相对于Km而言,K-II更大。参数变化分析证实,在线性弹性材料的假设下,牵引力和裂纹面上的润滑可以显着提高裂纹扩展的可能性,而发现轧制速度的影响可忽略不计。考虑到钢轨材料(U71MnG)的最小断裂韧度为26 MPa m(1/2),垂直裂纹很难传播到块体内,这与现场观察一致,即RCF裂纹通常以浅角度传播到接触表面。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号