首页> 外文期刊>Transactions of the ASABE >MATHEMATICAL MODEL FOR SIMULATING HEADSPACE AND GRAIN TEMPERATURES IN GRAIN BINS
【24h】

MATHEMATICAL MODEL FOR SIMULATING HEADSPACE AND GRAIN TEMPERATURES IN GRAIN BINS

机译:模拟谷物桶顶面和籽粒温度的数学模型

获取原文
获取原文并翻译 | 示例
           

摘要

A computer simulation model for predicting temperatures of headspace air and the top meter of grain under both naturally and mechanically ventilated grain bin conditions is presented. Headspace air temperature was estimated using energy balances for the bin roof, exposed wall in the headspace, and headspace air exchange as a result of both natural and mechanical ventilation. Sub-models for estimating radiation (solar, sky, earth, and re-radiation) on bin roof and wall, and natural ventilation of the headspace due to wind and thermal buoyancy forces were involved in the headspace air temperature prediction model. Grain temperature was modeled by considering heat transfer due to conduction, natural convection caused by temperature differences between grain and ambient air, and convection due to forced air movement through grain during aeration or mechanical ventilation of the headspace. The accuracy and validity of the model are discussed. Simulations were conducted using 30 years of weather data for Minneapolis-St. Paul, Minnesota, and Lexington, Kentucky, for winter and summer conditions. Sensitivity analyses for the effect of bin surface conditions (new and weathered galvanized steel, and black- and white-colored steel bin surfaces) on the headspace air and grain temperatures were conducted. Headspace air changes per hour and headspace air temperatures were calculated for 10 and 20 m diameter bins with various sizes of eave gap and roof vents, and for two bin surface conditions (new galvanized steel and white-colored bin surfaces). Regression models to predict the number of air changes per hour in the headspace as a function of the ratio of headspace open area to headspace volume were developed. For galvanized steel bin surfaces, increasing openings in the headspace to increase natural ventilation reduced headspace air and grain temperatures. For white-colored bin surfaces, minimizing natural ventilation reduced headspace air and grain temperatures.
机译:提出了一种计算机模拟模型,该模型可预测自然通风和机械通风谷物仓条件下的顶空空气和谷物最高温度。顶空空气温度的估算是使用仓顶,顶空中暴露的壁以及自然通风和机械通风导致的顶空空气交换的能量平衡进行的。用于估算箱顶和墙壁上的辐射(太阳,天空,地球和再辐射)的子模型,以及由于风和热浮力而导致的顶空自然通风的子模型,都包含在顶空空气温度预测模型中。谷物温度的模型化考虑了传导引起的热传递,谷物与环境空气之间的温差导致的自然对流以及顶空曝气或机械通风过程中由于强迫空气通过谷物而造成的对流。讨论了模型的准确性和有效性。使用Minneapolis-St的30年天气数据进行了模拟。明尼苏达州的Paul和肯塔基州的列克星敦,适用于冬季和夏季。进行了敏感性分析,以分析仓室表面状况(新的和风化的镀锌钢以及黑色和白色的钢仓室表面)对顶空空气和谷物温度的影响。对于直径为10和20 m的具有各种尺寸的屋檐间隙和屋顶通风口的垃圾箱,以及两个垃圾箱表面条件(新的镀锌钢和白色垃圾箱表面),计算了每小时的顶部空间空气变化和顶部空间空气温度。开发了用于预测顶空每小时空气变化数量与顶空开放面积与顶空体积之比的函数的回归模型。对于镀锌的钢制垃圾箱表面,增加顶部空间的开口以增加自然通风会降低顶部空间的空气和谷物温度。对于白色的垃圾箱表面,最大程度地减少自然通风会减少顶部空间的空气和谷物温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号