...
首页> 外文期刊>The FEBS journal >Phosphorylation is the major mechanism regulating isocitrate lyase activity in Paracoccidioidesbrasiliensis yeast cells.
【24h】

Phosphorylation is the major mechanism regulating isocitrate lyase activity in Paracoccidioidesbrasiliensis yeast cells.

机译:磷酸化是调控Paraacoccidioidesbrasiliensis酵母细胞中异柠檬酸裂合酶活性的主要机制。

获取原文
获取原文并翻译 | 示例

摘要

The glyoxylate cycle plays an essential role for anaplerosis of oxaloacetate during growth of microorganisms on carbon sources such as acetate or fatty acids and has been shown to contribute to virulence of several pathogens. Here, we investigated the transcriptional and post-translational regulation of the glyoxylate cycle key enzyme isocitrate lyase (PbICL) in the human pathogenic fungus Paracoccidioides brasiliensis. Although sequence analyses on fungal isocitrate lyases revealed a high phylogenetic conservation, their regulation seems to differ significantly. Closely related Aspergillus species regulate the glyoxylate cycle at the transcriptional level, whereas Pbicl was constitutively expressed in yeast cells. However, only low PbICL activity was detected when cells were grown in the presence of glucose. Two-dimensional gel analyses with subsequent antibody hybridization revealed constitutive production of PbICL, but low PbICL activity on glucose coincided with extensive protein phosphorylation. Since an in vitro dephosphorylation of PbICL from glucose grown cells strongly increased ICL activity and resembled the phosphorylation pattern of highly active acetate grown cells, post-translational modification seems the main mechanism regulating PbICL activity in yeast cells. In agreement, a transfer of yeast cells from glucose to acetate medium increased PbICL activity without requirement of de novo protein synthesis. Thus, inactivation of PbICL by phosphorylation is reversible, denoting a new strategy for the rapid adaptation to changing environmental conditions.
机译:乙醛酸循环对于微生物在碳源(例如乙酸盐或脂肪酸)上的生长过程中草酰乙酸的失活起着至关重要的作用,并且已表明其可导致多种病原体的致病性。在这里,我们研究了人类病原性真菌巴西乳杆菌中乙醛酸循环关键酶异柠檬酸裂合酶( Pb ICL)的转录和翻译后调控。尽管对真菌异柠檬酸裂合酶的序列分析显示出高度的系统发育保守性,但它们的调控似乎有很大不同。密切相关的曲霉菌种在转录水平上调节乙醛酸循环,而 Pbicl 在酵母细胞中组成性表达。然而,当细胞在葡萄糖存在下生长时,仅检测到低的PbICL活性。二维凝胶分析和随后的抗体杂交显示了 Pb ICL的组成型产生,但是 Pb ICL对葡萄糖的活性较低,同时伴随着广泛的蛋白质磷酸化。由于葡萄糖生长的细胞对 Pb ICL的体外脱磷酸作用大大增强了ICL活性,并且类似于高活性乙酸盐生长的细胞的磷酸化模式,因此翻译后修饰似乎是主要机制调节酵母细胞中的 Pb ICL活性。一致的是,酵母细胞从葡萄糖到乙酸盐培养基的转移增加了 Pb ICL的活性,而无需合成新的蛋白质。因此,磷酸化灭活PbICL是可逆的,这表明了一种快速适应变化的环境条件的新策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号