首页> 外文期刊>The FEBS journal >A historical perspective on protein crystallization from1840 to the present day
【24h】

A historical perspective on protein crystallization from1840 to the present day

机译:从1840年至今的蛋白质结晶的历史观点

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Protein crystallization has been known since 1840 and can prove to bestraightforward but, in most cases, it constitutes a real bottleneck. This stimulatedthe birth of the biocrystallogenesis field with both ‘practical’ and‘basic’ science aims. In the early years of biochemistry, crystallization was atool for the preparation of biological substances. Today, biocrystallogenesisaims to provide efficient methods for crystal fabrication and a means to optimizecrystal quality for X-ray crystallography. The historical development ofcrystallization methods for structural biology occurred first in conjunctionwith that of biochemical and genetic methods for macromolecule production,then with the development of structure determination methodologies and,recently, with routine access to synchrotron X-ray sources. Previously, theidentification of conditions that sustain crystal growth occurred mostlyempirically but, in recent decades, this has moved progressively towardsmore rationality as a result of a deeper understanding of the physical chemistryof protein crystal growth and the use of idea-driven screening and highthroughputprocedures. Protein and nucleic acid engineering procedures tofacilitate crystallization, as well as crystallization methods in gelled-media orby counter-diffusion, represent recent important achievements, although theunderlying concepts are old. The new nanotechnologies have brought a significantimprovement in the practice of protein crystallization. Today, theincreasing number of crystal structures deposited in the Protein Data Bankcould mean that crystallization is no longer a bottleneck. This is not the case,however, because structural biology projects always become more challengingand thereby require adapted methods to enable the growth of the appropriatecrystals, notably macromolecular assemblages.
机译:自1840年以来,人们就已经知道蛋白质结晶,并且可以证明它很简单,但是在大多数情况下,它构成了真正的瓶颈。这激发了具有“实用”和“基础”科学目的的生物晶体发生领域的诞生。在生物化学的早期,结晶是制备生物物质的工具。如今,生物晶体生成技术旨在为晶体制造提供有效的方法,并为X射线晶体学优化晶体质量提供一种手段。结构生物学结晶方法的历史发展首先是与大分子生产的生化和遗传方法相结合,然后是结构确定方法的发展,最近是常规使用同步加速器X射线源。以前,对维持晶体生长的条件的鉴定主要是凭经验进行的,但近几十年来,由于对蛋白质晶体生长的物理化学有了更深入的了解,并采用了思想驱动的筛选方法和高通量方法,这种方法逐渐朝着更加合理的方向发展。尽管基础概念已经过时,但是促进结晶的蛋白质和核酸工程程序以及凝胶化介质法或反扩散法中的结晶方法代表了最近的重要成就。新的纳米技术极大地提高了蛋白质结晶的实践。如今,蛋白质数据库中越来越多的晶体结构可能意味着结晶不再是瓶颈。但是,事实并非如此,因为结构生物学项目始终变得更具挑战性,因此需要采用合适的方法来生长合适的晶体,尤其是大分子组装体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号